1
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2024; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Jin Z, Chen T, Zhu Z, Xu B, Yan D. The role of TRIM59 in immunity and immune-related diseases. Int Rev Immunol 2022; 43:33-40. [PMID: 35975813 DOI: 10.1080/08830185.2022.2102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 10/15/2022]
Abstract
TRIM59 is a member of the tripartite motif containing (TRIM) protein family. It functions as an E3 ubiquitin ligase through its RING domain and is expressed by multiple types of cells. Physiogically, TRIM59 is involved in development, immune response, and the invasion and metastasis of tumors. In this review, we first describe the structure, expression, and subcellular location of TRIM59. Then, we summarize emerging evidence for TRIM59 in immunological diseases including infection, vascular diseases, autoimmunity, and tumor immunity. Additionally, we discuss important molecular signaling pathways that mediate TRIM59 activity. Altogether, the accumulating evidence suggests that manipulating TRIM59 levels and activity may open an avenue for innovative therapies for immune diseases and tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiffany Chen
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baohui Xu
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
4
|
Chang SC, Zhang BX, Ding JL. E2-E3 ubiquitin enzyme pairing - partnership in provoking or mitigating cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188679. [DOI: 10.1016/j.bbcan.2022.188679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
5
|
Mohammadi A, Pour Abbasi MS, Khorrami S, Khodamoradi S, Mohammadi Goldar Z, Ebrahimzadeh F. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 2021; 24:460-470. [PMID: 34643877 DOI: 10.1007/s12094-021-02715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins' alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Genetics Islamic, Azad University of Marand, Marand, Iran
| | | | - S Khorrami
- Tehran University of Medical Sciences, Tehran, Iran
| | - S Khodamoradi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Z Mohammadi Goldar
- Department of Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Jin Z, Liu L, Yu Y, Li D, Zhu X, Yan D, Zhu Z. TRIM59: A potential diagnostic and prognostic biomarker in human tumors. PLoS One 2021; 16:e0257445. [PMID: 34534244 PMCID: PMC8448305 DOI: 10.1371/journal.pone.0257445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
TRIM59 is a protein that is highly expressed in a variety of tumors and promotes tumor development. However, the use of TRIM59 as tumor diagnosis and prognosis biomarker has not been fully explored. We collected datasets from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) to investigate its potential as a biomarker for diagnosis and prognosis. A total of 46 studies, including 11,558 patients were included in this study. Here, we showed that TRIM59 was significantly upregulated in 15 type of human solid tumors in comparison to their adjacent tissues. Receiver operating characteristic curve (ROC) results provided further evidence for the use of TRIM59 as a potential tumor diagnosis biomarker. Overall survival (OS) was compared between TRIM59 high expression and low expression groups. High expression of TRIM59 indicated a poor prognosis in multiple solid tumors. Taken together, these analyses showed that TRIM59 was upregulated in various types of tumors and had the potential to be used as a diagnostic and prognostic biomarker in human solid tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Youran Yu
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
- * E-mail: (DY); (ZZ)
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail: (DY); (ZZ)
| |
Collapse
|
7
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
8
|
Marzano F, Caratozzolo MF, Pesole G, Sbisà E, Tullo A. TRIM Proteins in Colorectal Cancer: TRIM8 as a Promising Therapeutic Target in Chemo Resistance. Biomedicines 2021; 9:biomedicines9030241. [PMID: 33673719 PMCID: PMC7997459 DOI: 10.3390/biomedicines9030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient’s premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Mariano Francesco Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, “Aldo Moro”, 70125 Bari, Italy
| | - Elisabetta Sbisà
- Institute for Biomedical Technologies, National Research Council, CNR, 70126 Bari, Italy;
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Correspondence:
| |
Collapse
|
9
|
Wu C, Shang XQ, You ZP, Jin QF, Zhang YL, Zhou Y, Zhang YZ, Shi K. TRIM59 Promotes Retinoblastoma Progression by Activating the p38-MAPK Signaling Pathway. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32744597 PMCID: PMC7441337 DOI: 10.1167/iovs.61.10.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Retinoblastoma is a malignant tumor of the developing retina that mostly occurs in children. Our study aimed to investigate the effect of tripartite motif-containing protein 59 (TRIM59) on retinoblastoma growth and the underlying mechanisms. Methods We performed bioinformatic analysis of three datasets (GSE24673, GSE97508, and GSE110811) from the Gene Expression Omnibus database. Quantitative reverse-transcription PCR and immunoblotting of three retinoblastoma cell lines were conducted to verify TRIM59 as a differentially expressed gene. Specific siRNAs were used to inhibit TRIM59 expression in the HXO-Rb44 cell line. A lentiviral vector was transfected into the Y79 cell line to overexpress TRIM59. The effects of TRIM59 on retinoblastoma cell proliferation, cell cycling, and apoptosis were explored in vitro using the abovementioned cell lines. The effect of TRIM59 expression on retinoblastoma cell proliferation was evaluated in a mouse xenograft tumor model. Results TRIM59 expression in three retinoblastoma cell lines was remarkably elevated compared with normal control. Knocking down TRIM59 expression remarkably suppressed cell proliferation and growth and promoted cell apoptosis in HXO-Rb44 cells, whereas TRIM59 overexpression promoted tumor progression in Y79 cells. Silencing TRIM59 also markedly inhibited in vivo tumor growth in the xenograft model. Mechanistic studies revealed that TRIM59 upregulated phosphorylated p38, p-JNK1/2, p-ERK1/2, and p-c-JUN expression in retinoblastoma cells. Notably, the p38 inhibitor SB203580 attenuated the effects of TRIM59 on cell proliferation, apoptosis, and the G1/S phase transition. Conclusions TRIM59 plays an oncogenic role in retinoblastoma and exerts its tumor-promotive function by activating the p38-mitogen-activated protein kinase pathway.
Collapse
|
10
|
Liu R, Li H, Xu Y, Li X, Guo X, Shi J, Cui Y, Wang Z, Liu J. Blockade of TRIM59 enhances esophageal cancer cell chemosensitivity to cisplatin by upregulating p53. Oncol Lett 2020; 21:6. [PMID: 33240412 PMCID: PMC7681221 DOI: 10.3892/ol.2020.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Human esophageal cancer (hESC) cell motility adopts various modes, resulting in hESC progression and poor survival. However, how tripartite motif 59 (TRIM59), as the ubiquitination machinery, participates in hESC metastasis is not completely understood. The results indicated that TRIM59 was aberrantly upregulated in hESC tissues compared with adjacent healthy esophageal tissues, which was associated with poor survival and advanced TNM state among patients with hESC. Moreover, patients with hESC with higher TRIM59 expression displayed undetectable p53 expression, which contributed to enhanced progression and motility of hESC. At the molecular level, TRIM59 was indicated to be an E3 putative ubiquitin ligase that targeted the p53 protein, leading to increased degradation of p53, which resulted in decreased chemosensitivity to cisplatin. TRIM59 knockdown reduced TRIM59 expression, increased p53 protein expression, and decreased hESC cell viability, clone formation and migration compared with the small interfering RNA negative control (siNC) group. Furthermore, hESC cell lines were more sensitive to cisplatin in the TRIM59-knockdown group compared with the siNC group. The results indicated a relationship between TRIM59, p53 and the chemosensitivity of cisplatin. The present study suggested that TRIM59 may serve as a promising prognostic indicator for patients with hESC.
Collapse
Affiliation(s)
- Rongfeng Liu
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xing Li
- Department of Immuno-Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaojin Guo
- Department of Immuno-Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jian Shi
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanzhi Cui
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhiyu Wang
- Department of Immuno-Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junfeng Liu
- Third Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
11
|
He R, Liu H. TRIM59 knockdown blocks cisplatin resistance in A549/DDP cells through regulating PTEN/AKT/HK2. Gene 2020; 747:144553. [PMID: 32165307 DOI: 10.1016/j.gene.2020.144553] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/08/2020] [Indexed: 01/21/2023]
Abstract
Cisplatin is commonly used for lung cancer treatment. However, acquire resistance to cisplatin results in reduced therapy efficacy. Tripartite motif-containing 59 (TRIM59), acting as an oncogene in non-small cell lung cancer (NSCLC), induces chemoresistance in breast cancer cells. Here, the mechanism by which TRIM59 mediates cisplatin resistance was determined. We demonstrated that cisplatin-resistant NSCLC cell line (A549/DDP) had higher expression of TRIM59 than its parental cell line (A549). As indicated by cell apoptosis assay, TRIM59 overexpression in A549 cells resulted in an increased cisplatin resistance, while TRIM59 downregulation in A549/DDP cells led to an decreased cisplatin resistence. A549/DDP cells with TIMR59 knockdown was more sensitive to cisplatin treatment in a xenograft model. Moreover, A549/DDP cells exhibited increased glucose uptake, lactate production, and hexokinase 2 (HK2, an important glycolytic pathway enzyme) expression than A549 cells. The glycolysis was increased by TRIM59 overexpression in A549 cell, and decreased by TRIM59 knockdown in A549/DDP cells. 3-Bromopyruvate Acid (3-BrPA), an inhibitor of HK2, significantly enhanced cisplatin-sensitivity in A549 cells overexpressing TRIM59. Furthermore, both TRIM59 and HK2 expression was higher in cisplatin-resistant NSCLC tissues than in non-resistant ones, and mRNA expression of these two molecules was positively correlated in NSCLC tissues. The changes of PTEN and phosphorylation of AKT (p-AKT), a critical upstream regulator of HK2, were also consistent with HK2 expression. Immunoprecipiation experiments showed the interaction between TRIM59 and PTEN in A549/DDP cells, and that TRIM59 knockdown suppressed the ubiquitination of PTEN. Collectively, the present study indicates that TRIM59 knockdown reverses high glycolysis rate and cisplatin resistance in A549/DDP cells through the regulation of PTEN/AKT/HK2 and may provide insights into overcoming cancer resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Rong He
- Department of Thoracic Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, PR China
| | - Hongxu Liu
- Department of Thoracic Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, PR China.
| |
Collapse
|
12
|
Liu G, Song J, Zhao Y, Zhang L, Qin J, Cui Y. Tripartite motif containing 59 (TRIM59) promotes esophageal cancer progression via promoting MST4 expression and ERK pathway. J Recept Signal Transduct Res 2020; 40:471-478. [PMID: 32340525 DOI: 10.1080/10799893.2020.1756327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To detect the expression of tripartite motif containing 59 (TRIM59) in human esophageal cancer (EC) tissues and explore whether TRIM59 could affect the progression of EC.Methods: Quantitative PCR and immunohistochemistry assays were performed to detect the expression of TRIM59 in 40 human EC tissues and corresponding non-tumor tissues. The correlations between TRIM59 expression and clinical pathological features of patients with EC were also investigated. CCK-8, colony formation, wound closure, and transwell assays were performed to detect the effects of TRIM59 on EC cells in vitro., Immunoblotting assays were performed to detect the effects of TRIM59 on the expression of mammalian sterile-20-like kinase 4 (MST4) and ERK pathway.Results: We reported increased expression of TRIM59 in human EC tissues, and its expression was correlated with clinical features, including metastasis (p = .011*) and maximum diameter (p = .027*), in patients with EC. We further found that TRIM59 contributed to the proliferation and invasion of EC cells via regulating mammalian sterile-20-like kinase 4 (MST4) expression and ERK pathway.Conclusion: Our data confirmed the involvement of TRIM59 in EC progression and proposed that TRIM59 could serve as a promising therapeutic target for the treatment of EC.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Jinying Song
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yong Zhao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Lianjie Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Junjie Qin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
13
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
14
|
Li R, Weng L, Liu B, Zhu L, Zhang X, Tian G, Hu L, Li Q, Jiang S, Shang M. TRIM59 predicts poor prognosis and promotes pancreatic cancer progression via the PI3K/AKT/mTOR-glycolysis signaling axis. J Cell Biochem 2019; 121:1986-1997. [PMID: 31693252 DOI: 10.1002/jcb.29433] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA-mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.
Collapse
Affiliation(s)
- Rongkun Li
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Wang M, Chao C, Luo G, Wang B, Zhan X, Di D, Qian Y, Zhang X. Prognostic significance of TRIM59 for cancer patient survival: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e18024. [PMID: 31770215 PMCID: PMC6890323 DOI: 10.1097/md.0000000000018024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The family of tripartite motif (TRIM) proteins, which includes 80 known TRIM protein genes in humans, play a key role in cellular processes. TRIM59, a member of the TRIM family of proteins, has been reported to be involved in the carcinogenesis of multiple types of tumors. However, the prognostic value of TRIM59 in the survival of tumor patients remains controversial. We therefore conducted a meta-analysis to assess the prognostic significance of TRIM59 in cancer patients. MATERIALS AND METHODS PubMed, Embase, VIP, CNKI and Wanfang Data were searched for eligible reports published before September 30, 2018. The hazard ratio (HR) and 95% confidence intervals (CIs) were adopted to estimate the association between TRIM59 and overall survival (OS). RESULTS Six studies with 1584 patients were included to assess the effect. The results showed that high levels of TRIM59 were significantly associated with poor OS in cancer patients (HR = 1.43, 95%CI: 1.24-1.66, P < .001), indicating that higher TRIM59 expression could be an independent prognostic factor for poor survival in cancer patients. CONCLUSION Our meta-analysis suggests that higher TRIM59 expression predicts poor prognosis in cancer patients, and it may therefore serve as a promising prognostic factor.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiothoracic Surgery
| | - Ce Chao
- Department of Cardiothoracic Surgery
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery
| | | | | | | | | |
Collapse
|
16
|
TRIM59 inhibits porcine reproductive and respiratory syndrome virus (PRRSV)-2 replication in vitro. Res Vet Sci 2019; 127:105-112. [PMID: 31683196 DOI: 10.1016/j.rvsc.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV), has ranked among the major economically significant pathogen in the global swine industry. The PRRSV nonstructural protein (nsp)11 possesses nidovirus endoribonuclease (NendoU) activity, which is important for virus replication and suppression of the host innate immunity system. Recent proteomic study found that TRIM59 (tripartite motif-containing 59) interacted with the nsp11, albeit the exact role it plays in PRRSV infection remains enigmatic. Herein, we first confirmed the interaction between nsp11 and TRIM59 in co-transfected HEK293T cells and PRRSV-infected pulmonary alveolar macrophages (PAMs). The interacting domains between TRIM59 and nsp11 were further determined to be the N-terminal RING domain in TRIM59 and the C-terminal NendoU domain in nsp11, respectively. Moreover, we reported that overexpression of TRIM59 inhibited PRRSV infection in Marc-145 cells. Conversely, small interfering RNA (siRNA) depletion of TRIM59 resulted in enhanced production of PRRSV in PAMs. Together, these data add TRIM59 as a crucial antiviral component against PRRSV and provide new insights for development of new compounds to reduce PRRSV infection.
Collapse
|
17
|
Tian Y, Guo Y, Zhu P, Zhang D, Liu S, Tang M, Wang Y, Jin Z, Li D, Yan D, Li G, Zhu X. TRIM59 loss in M2 macrophages promotes melanoma migration and invasion by upregulating MMP-9 and Madcam1. Aging (Albany NY) 2019; 11:8623-8641. [PMID: 31600735 PMCID: PMC6814609 DOI: 10.18632/aging.102351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
The culture supernatant from macrophages overexpressing TRIM59 has a cytotoxic effect on melanoma, but the mechanism remains unclear. To investigate whether deletion of TRIM59 in macrophages affects the metastatic potential of melanoma cells, we polarized control and TRIM59-deficient bone marrow-derived macrophages to the M2 phenotype and collected the respective conditioned media (CM). Exposure to CM from TRIM59-/--M2 cultures significantly promoted migration and invasion by B16-F0 and B16-F10 cells. Cytokine profiling indicated a ~15-fold increase in TNF-α production in CM from TRIM59-/--M2 cultures, and neutralizing TNF-α activity abrogated the referred stimulatory effects on cell motility. Transcriptome analysis revealed significant upregulation of MMP-9 and Madcam1 in melanoma cells exposed to TRIM59-/--M2 CM. Inhibitory experiments determined that these changes were also TNF-α-dependent and mediated by activation of ERK signaling. Independent knockdown of MMP9 and Madcam1 in B16-F10 cells impeded epithelial-mesenchymal transition and inhibited subcutaneous tumor growth and formation of metastatic lung nodules in vivo. These data suggest TRIM59 expression attenuates the tumor-promoting effect of tumor-associated macrophages, most of which resemble the M2 phenotype. Moreover, they highlight the relevance of TRIM59 in macrophages as a potential regulator of tumor metastasis and suggest TRIM59 could serve as a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China.,Department of Immunology, Jilin University, Changchun, China
| | - Yantong Guo
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, Jilin University, Changchun, China
| | - Dongxu Zhang
- Department of Immunology, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, Jilin University, Changchun, China
| | - Yuanxin Wang
- Department of Immunology, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
18
|
Liu R, Chen Y, Shou T, Hu J, Chen J, Qing C. TRIM67 promotes NF‑κB pathway and cell apoptosis in GA‑13315‑treated lung cancer cells. Mol Med Rep 2019; 20:2936-2944. [PMID: 31322254 DOI: 10.3892/mmr.2019.10509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/25/2019] [Indexed: 11/06/2022] Open
Abstract
13‑Chlorine‑3,15‑dioxy‑gibberellic acid methyl ester (GA‑13315), a gibberellin derivative, possesses strong anti‑tumor activity in vitro and in vivo. The present study aimed to investigate the underlying mechanisms of GA‑13315‑induced apoptosis in human non‑small cell lung cancer cell lines. Lung cancer cells were treated with different doses of GA‑13315 (4, 8, 16 and 32 ng/µl) for 48 h, and a CCK8 assay was performed to measure cell viability. Alteration in gene expression was identified using RNA‑sequencing (RNA‑Seq). Quantitative polymerase chain reaction (qPCR) was used to confirm the differentially expressed genes (DEGs) identified in RNA‑Seq. Gene expression plasmids or small interfering RNA were used to overexpress or silence targeted genes, in order to investigate downstream signals. Chromatin immunoprecipitation was conducted to evaluate the binding of transcription factors to the target genes. A Student's t‑test or one‑way analysis of variance followed by Tukey's honestly significant difference post‑hoc test were performed to evaluate the significance between groups. P<0.05 was considered to indicate a statistically significant difference. GA‑13315 significantly decreased the number of viable cells and induced apoptosis among lung cancer cells (median lethal dose =12‑16 ng/µl). RNA‑Seq identified 250 significant DEGs, including 94 upregulated and 156 downregulated genes in A549 cells (P<0.05; fold change ≥1.5). Upregulation of TRIM67, NF‑κB subunit 2 (NF‑κB2) and FAS was additionally confirmed using qPCR and western blot analysis in A549 and H460 cells. Apoptosis of A549 cells was significantly decreased following knockdown of TRIM67. GA‑13315 promoted TRIM67 expression to increase FAS expression and cell apoptosis. TRIM67 promoted the processing of NF‑κB2 into its active form, p52, which then enhanced the NF‑κB pathway and GA‑13315‑induced apoptosis.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming,Yunnan 650031, P.R. China
| | - Yajuan Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming,Yunnan 650031, P.R. China
| | - Tao Shou
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Jing Hu
- Department of Oncology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Jingbo Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650031, P.R. China
| | - Chen Qing
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming,Yunnan 650031, P.R. China
| |
Collapse
|
19
|
Cui Z, Liu Z, Zeng J, Chen L, Wu Q, Mo J, Zhang G, Song L, Xu W, Zhang S, Guo X. Eugenol inhibits non‐small cell lung cancer by repressing expression of NF‐κB‐regulated TRIM59. Phytother Res 2019; 33:1562-1569. [PMID: 30932261 DOI: 10.1002/ptr.6352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zhilei Cui
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhen Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong University Shanghai China
| | - Junxiang Zeng
- Department of Laboratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lei Chen
- Department of PathologyXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiong Wu
- Respiratory Medicine DepartmentKongJiang Hospital, YangPu District Shanghai China
| | - Jiahang Mo
- Clinical Medical DepartmentZheJiang Chinese Medical University Hangzhou China
| | - Guorui Zhang
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lin Song
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weiguo Xu
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shulin Zhang
- Department of Immunology and MicrobiologyShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xuejun Guo
- Department of Respiratory MedicineXinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
20
|
Shen H, Zhang J, Zhang Y, Feng Q, Wang H, Li G, Jiang W, Li X. Knockdown of tripartite motif 59 (TRIM59) inhibits proliferation in cholangiocarcinoma via the PI3K/AKT/mTOR signalling pathway. Gene 2019; 698:50-60. [PMID: 30822475 DOI: 10.1016/j.gene.2019.02.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/30/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
AIM We analysed multiple microarray datasets in the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) DataSets for messenger RNAs (mRNAs) whose expression is apparently increased in human cholangiocarcinoma (CCA) samples, compared with that in the adjacent normal biliary epithelial tissue. The results revealed that the expression of tripartite motif-containing 59 (TRIM59) was significantly increased in the CCA tissue samples. TRIM59 is a member of the tripartite motif (TRIM) protein family, which contains a highly conserved N-terminal-an interesting new gene (RING) domain regulating transcriptional factors and tumorigenesis. In the present study, we investigated the effects of TRIM59 expression on tumour growth in CCA. MATERIALS AND METHODS After analyzing the microarray datasets from the TCGA database and GEO DataSets, we screened out 291 target genes, which are significantly overexpressed in CCA tissues, and TRIM59 was one of them. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were performed to determine the expression of TRIM59 in CCA tissues (n = 65) and cell lines. Kaplan-Meier survival analysis was conducted to assess the prognosis of TRIM59 in patients with CCA. A specific siRNA (siRNA-1008) was used to inhibit the expression of TRIM59 in HCCC9810 and HUCCT1 cell lines. The effects of TRIM59 silencing on cell proliferation were assessed by the CCK-8, colony-formation, and EDU incorporation assays. Furthermore, the effects of TRIM59 knockdown on cell apoptosis and cell cycle were determined by flow cytometry. The in vivo effects were evaluated using a mouse tumorigenic model. Western blotting was also performed to verify the relationship between knockdown of TRIM59 and activation of the PI3K/AKT/mTOR pathway. RESULTS TRIM59 was highly expressed in CCA tissues. The knockdown of TRIM59 obviously reduced the proliferation and colony formation abilities of CCA cells in vitro and in vivo. Furthermore, the cell apoptosis analysis results showed that TRIM59 silencing apparently promoted CCA cell apoptosis by the mitochondrial pathway. Our preliminary results indicate that the down-regulation of TRIM59 levels might restrict the PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Our study revealed that TRIM59 is up-regulated in CCA tissues and cell lines and promoted CCA cell proliferation, possibly by affecting the PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Hao Shen
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jiawei Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Qinchao Feng
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Hongwei Wang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Gaochao Li
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- The First School of Clinical Medicine, Nanjing Medical University, Jiangsu Province, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Jiangsu Province, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|