1
|
Ma Z, Yan XM, Geng J, Gao L, Du W, Li HB, Yuan LX, Zhou ZY, Zhang JS, Zhang Y, Chen L. Genome-wide identification and analysis of TMT-based proteomes in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle. Anim Biotechnol 2023; 34:1261-1272. [PMID: 34965845 DOI: 10.1080/10495398.2021.2019756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the gradual completion of the human genome project, proteomes have gained extremely important value in the fields of human disease and biological process research. In our previous research, we performed transcriptomic analyses of longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle and conducted in-depth studies on the muscles of both species through epigenetics. However, it is unclear whether differentially expressed proteins in Kazakh cattle and Xinjiang brown cattle regulate muscle production and development. In this study, a proteomic analysis was performed on Xinjiang brown cattle and Kazakh cattle by using TMT markers, HPLC classification, LC/MS and bioinformatics analysis. A total of 13,078 peptides were identified, including 11,258 unique peptides. We identified a total of 1874 proteins, among which 1565 were quantifiable. Compared to Kazakh cattle, Xinjiang brown cattle exhibited 75 upregulated proteins and 44 downregulated proteins. These differentially expressed proteins were enriched for the functions of adrenergic signaling in cardiomyocytes, fatty acid degradation and glutathione metabolism. In our research, we found differentially expressed proteins in longissimus dorsi tissue between Kazakh cattle and Xinjiang brown cattle. We predict that these proteins regulate muscle production and development through select enriched signaling pathways. This study provides novel insights into the roles of proteomes in cattle genetics and breeding.
Collapse
Affiliation(s)
- Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Xiang-Min Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Wei Du
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Li-Xing Yuan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Zhen-Yong Zhou
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Jin-Shan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Yang Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Lei Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Huang Y, Zhang H, Wang L, Liu C, Guo M, Tan H, Liu Z. MiR-613 inhibits the proliferation, migration, and invasion of papillary thyroid carcinoma cells by directly targeting TAGLN2. Cancer Cell Int 2021; 21:494. [PMID: 34530821 PMCID: PMC8447791 DOI: 10.1186/s12935-021-02083-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC), with a rapidly increasing incidence, is the most prevalent malignant cancer of the thyroid. However, its pathogenesis is unclear and its specific clinical indicators have not yet been identified. There is increasing evidence that microRNAs (miRNAs) play important roles in tumor occurrence and progression. Specifically, miR-613 participates in the regulation of tumor development in various cancers; however, its effects and mechanisms of action in PTC are still unclear. Therefore, in this study, we investigated the expression and function of miR-613 in PTC. Methods qRT-PCR was used to determine miR-613 expression in 107 pairs of PTC and adjacent-normal tissues as well as in PTC cell lines and to detect TAGLN2 mRNA expression in PTC tissues and adjacent normal tissues. Western blot analysis was performed to identify TAGLN2 and epithelial–mesenchymal transition (EMT) biomarkers. The effects of miR-613 on PTC progression were evaluated by performing MTS, wound-healing, and Transwell assays in vitro. Luciferase reporter assays were also performed to validate the target of miR-613. Results In PTC, miR-613 was significantly downregulated and its low expression level was associated with cervical lymph node metastasis. However, its overexpression significantly suppressed PTC cell proliferation, migration, and invasion and inhibited EMT. TAGLN2 was identified as a target of miR-613, which also significantly inhibited the expression of TAGLN2. Further, the restoration of TAGLN2 expression attenuated the inhibitory effects of miR-613 on PTC cell proliferation and metastasis. Conclusion Our findings demonstrated that miR-613 can suppress the progression of PTC cells by targeting TAGLN2, indicating that miR-613 plays the role of a tumor suppressor in PTC. Overall, these results suggest that the upregulation of miR-613 is a promising therapeutic strategy for PTC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02083-8.
Collapse
Affiliation(s)
- Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou, 730000, China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Mingyue Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Hao Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
3
|
Cao M, Xiao D, Ding X. The anti-tumor effect of ursolic acid on papillary thyroid carcinoma via suppressing Fibronectin-1. Biosci Biotechnol Biochem 2020; 84:2415-2424. [PMID: 32942951 DOI: 10.1080/09168451.2020.1813543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
This study aims to discover the effects of ursolic acid (UA) on papillary thyroid carcinoma (PTC). Human PTC cells were under UA treatment, and cell viability, clone formation, and apoptosis were measured by MTT assay, clone formation assay, and flow cytometry, respectively. Expressions of apoptosis- and epithelial-mesenchymal transition (EMT)-related markers were determined via qRT-PCR and western blot. Fibronectin-1 (FN1) expression in thyroid carcinoma was analyzed by GEPIA2 and qRT-PCR. The effects of overexpressed FN1 on UA-treated cells were detected following the previous procedures. Cell viability, proliferation, and EMT-related marker expressions were inhibited, while cell apoptosis and apoptosis-related marker expressions were promoted by UA. FN1 was higher expressed in thyroid carcinoma and downregulated by UA. Effects of FN1 on cell viability, proliferation, and apoptosis- and EMT-related marker expressions were partially reversed by UA. UA inhibited human PTC cell viability, proliferation, and EMT but promoted apoptosis via suppressing FN1.
Collapse
Affiliation(s)
- Mingxiang Cao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Di Xiao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Xubei Ding
- Department of Thyroid and Breast Surgery, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| |
Collapse
|
4
|
Liu Y, Gao S, Jin Y, Yang Y, Tai J, Wang S, Yang H, Chu P, Han S, Lu J, Ni X, Yu Y, Guo Y. Bioinformatics analysis to screen key genes in papillary thyroid carcinoma. Oncol Lett 2019; 19:195-204. [PMID: 31897130 PMCID: PMC6924100 DOI: 10.3892/ol.2019.11100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid carcinoma, and its incidence has been on the increase in recent years. However, the molecular mechanism of PTC is unclear and misdiagnosis remains a major issue. Therefore, the present study aimed to investigate this mechanism, and to identify key prognostic biomarkers. Integrated analysis was used to explore differentially expressed genes (DEGs) between PTC and healthy thyroid tissue. To investigate the functions and pathways associated with DEGs, Gene Ontology, pathway and protein-protein interaction (PPI) network analyses were performed. The predictive accuracy of DEGs was evaluated using the receiver operating characteristic (ROC) curve. Based on the four microarray datasets obtained from the Gene Expression Omnibus database, namely GSE33630, GSE27155, GSE3467 and GSE3678, a total of 153 DEGs were identified, including 66 upregulated and 87 downregulated DEGs in PTC compared with controls. These DEGs were significantly enriched in cancer-related pathways and the phosphoinositide 3-kinase-AKT signaling pathway. PPI network analysis screened out key genes, including acetyl-CoA carboxylase beta, cyclin D1, BCL2, and serpin peptidase inhibitor clade A member 1, which may serve important roles in PTC pathogenesis. ROC analysis revealed that these DEGs had excellent predictive performance, thus verifying their potential for clinical diagnosis. Taken together, the findings of the present study suggest that these genes and related pathways are involved in key events of PTC progression and facilitate the identification of prognostic biomarkers.
Collapse
Affiliation(s)
- Yuanhu Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Shuwei Gao
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Hui Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China.,Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| |
Collapse
|
5
|
Yin LM, Ulloa L, Yang YQ. Transgelin-2: Biochemical and Clinical Implications in Cancer and Asthma. Trends Biochem Sci 2019; 44:885-896. [PMID: 31256982 DOI: 10.1016/j.tibs.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Transgelin-2 has been regarded as an actin-binding protein that induces actin gelation and regulates actin cytoskeleton. However, transgelin-2 has recently been shown to relax the myosin cytoskeleton of the airway smooth muscle cells by acting as a receptor for extracellular metallothionein-2. From a clinical perspective, these results support transgelin-2 as a promising therapeutic target for diseases such as cancer and asthma. The inhibition of transgelin-2 prevents actin gelation and thereby cancer cell proliferation, invasion, and metastasis. Conversely, the activation of transgelin-2 with specific agonists relaxes airway smooth muscles and reduces pulmonary resistance in asthma. Here, we review new studies on the biochemical properties of transgelin-2 and discuss their clinical implications for the treatment of immune, oncogenic, and respiratory disorders.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Luis Ulloa
- International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Center of Immunology and Inflammation, Dept. of Surgery. Rutgers University-New Jersey Medical School, Newark, NJ 07101, USA.
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
6
|
Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int J Med Sci 2019; 16:450-460. [PMID: 30911279 PMCID: PMC6428975 DOI: 10.7150/ijms.29935] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 11/05/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent form of malignancy among all cancers of the thyroid. It is also one of the few cancers with a rapidly increasing incidence. PTC is usually contained within the thyroid gland and generally biologically indolent. Prognosis of the cancer is excellent, with less than 2% mortality at 5 years. However, more than 25% of patients with PTC developed a recurrence during a long term follow-up. The present article provides an updated condensed overview of PTC, which focuses mainly on the molecular alterations involved and recent biomarker investigations.
Collapse
Affiliation(s)
- Mardiaty Iryani Abdullah
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Barani Karikalan
- Perdana University, Jalan MAEPS Perdana, Serdang 43400, Selangor, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|