1
|
Asadi A, Barati F, Nakhaee A, Jahantigh D, Hashemi SM, Taheri M, Bahari G. Association between PRNCR1, PAX8AS1, MEG3, and PTENP1 gene polymorphisms and breast cancer risk. Per Med 2024; 21:373-383. [PMID: 39639674 DOI: 10.1080/17410541.2024.2435800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
AIM In this study, we examined the polymorphisms of PRNCR1 (rs13252298, rs1456315), PAX8-AS1 (rs4848320) MEG3 (rs7158663), PTENP1 (rs7853346) genes in BC patients and compared it with healthy individuals in an Iranian population. METHOD The assessment of genetic polymorphisms was conducted using PCR - RFLP and PCR-Tetra ARMS methods. RESULTS & CONCLUSION The results showed that Codominant, Dominant and G allele of rs13252298 polymorphism and Dominant of rs1456315 polymorphism are correlated with increased risk of BC. The CT and TT genotype and Dominant and T allele of rs4848320 polymorphism is also a risk factor in the study population. The genotype AA, dominant, recessive and A allele of rs7158663 polymorphism and also CC genotype of rs7853346 polymorphism increase the risk of BC.
Collapse
Affiliation(s)
- Anoosha Asadi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Barati
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Nakhaee
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Seyed-Mehdi Hashemi
- Clinical Immunology Research Center, Department of Internal Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non- Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
2
|
Gu P, Ding W, Zhu W, Shen L, Zhang L, Wang W, Wang R, Wang W, Wang Y, Yan B, Sun X. MIR4435-2HG: A novel biomarker for triple-negative breast cancer diagnosis and prognosis, activating cancer-associated fibroblasts and driving tumor invasion through EMT associated with JNK/c-Jun and p38 MAPK signaling pathway activation. Int Immunopharmacol 2024; 142:113191. [PMID: 39317050 DOI: 10.1016/j.intimp.2024.113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Breast cancer has the highest incidence rate and causes the most fatalities among all female cancers worldwide. Triple-negative breast cancer (TNBC) is known for its strong invasiveness and higher rates of recurrence. In this research, we aimed to identify MIR4435-2HG as a promising long non-coding RNA (lncRNA) biomarker and therapeutic target for TNBC. METHODS Utilizing clinicopathological information and transcriptome data from The Cancer Genome Atlas (TCGA) database, we assessed the clinical relevance of MIR4435-2HG in breast cancer through univariate and multivariate COX regression, receiver operating characteristic (ROC) analysis, as well as Kaplan-Meier survival analysis. To investigate the biological role of MIR4435-2HG in TNBC, we conducted gene set enrichment analysis (GSEA), as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Additionally, we constructed and validated a nomogram to predict disease-free survival (DFS). Both the R package "pRRophetic" and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were employed to forecast the sensitivity to different therapeutics between the high- and low-MIR4435-2HG groups. We employed single-cell RNA sequencing analysis and tumor microenvironment infiltration analysis to investigate the potential involvement of MIR4435-2HG in the TNBC tumor microenvironment. Cellular biological behaviors were assessed utilizing CCK-8, transwell assays, and wound-healing assays. Furthermore, we performed RNA-seq, qRT-PCR, and western blotting analyses to elucidate and confirm the specific mechanisms underlying the role of MIR4435-2HG in TNBC. RESULTS In our study, we have identified MIR4435-2HG as a significant diagnostic and prognostic factor for TNBC. We observed that MIR4435-2HG is widely expressed and might have a significant impact on the reshaping of the TNBC tumor microenvironment. Patients with TNBC in the high-MIR4435-2HG group may show reduced sensitivity to cisplatin, doxorubicin, and gemcitabine and have an increased propensity for immune escape. Knockdown of MIR4435-2HG inhibits cancer-associated fibroblasts (CAFs) activation. Notably, MIR4435-2HG predominantly enhances the migratory and invasive capabilities of TNBC cells through the epithelial-mesenchymal transition (EMT) process. Mechanistically, we validated that MIR4435-2HG activates the JNK/c-Jun and p38 non-classical MAPK signaling pathway in TNBC cells. CONCLUSIONS Our findings highlight the significant potential of MIR4435-2HG as a highly promising biomarker for TNBC. Targeting MIR4435-2HG could represent an appealing therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Peng Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wentao Ding
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenting Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ling Shen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Lei Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Wei Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Yanhao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| |
Collapse
|
3
|
Al-Noshokaty TM, El-Sayyad GS, Abdelhamid R, Mansour A, Abdellatif N, Alaaeldien A, Reda T, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Mohammed OA, Abulsoud AI. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review. Exp Cell Res 2024; 444:114365. [PMID: 39626864 DOI: 10.1016/j.yexcr.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Despite the progress made in the development of targeted therapies, breast cancer (BC) continues to pose a significant threat to the health of women. Transcriptomics has emerged due to the advancements in high-throughput sequencing technology. This provides crucial information about the role of non-coding RNAs (ncRNAs) in human cells, particularly long ncRNAs (lncRNAs), in disease development and function. When the control of these ncRNAs is disrupted, various illnesses emerge, including cancer. Numerous studies have produced empirical data on the function of lncRNAs in tumorigenesis and disease development. However, the roles and mechanisms of numerous lncRNAs remain unidentified at the molecular level because their regulatory role and the functional implications of abnormalities in cancer biology have yet to be thoroughly defined. The review gives an itemized summary of the most current developments in the role of lncRNA in BC, focusing on three main pathways, PI3K, MAPK, NF-kB, and hypoxia, and their resistance mechanisms.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
4
|
Cheng S, Chen J, Li Q, Nie Y, Ni T, Peng C, Luo X, Yasin P, Zhang S, Tang J, Liu Z. Protective effect of folic acid on MNNG-induced proliferation of esophageal epithelial cells via the PI3K/AKT/mTOR signaling pathway. J Nutr Biochem 2024; 133:109702. [PMID: 39025456 DOI: 10.1016/j.jnutbio.2024.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.
Collapse
Affiliation(s)
- Suizhi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Jin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Qianhui Li
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yuhong Nie
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Ting Ni
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Caiting Peng
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Xi Luo
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Pazilat Yasin
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Shumin Zhang
- Department of Biochemistry, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, China
| | - Jiancai Tang
- Department of Biochemistry, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, China
| | - Zhenzhong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
5
|
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM, Hashimoto RF. LncRNA PTENP1/miR-21/PTEN Axis Modulates EMT and Drug Resistance in Cancer: Dynamic Boolean Modeling for Cell Fates in DNA Damage Response. Int J Mol Sci 2024; 25:8264. [PMID: 39125832 PMCID: PMC11311614 DOI: 10.3390/ijms25158264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - Pedro R. Lorenzoni
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
6
|
Xie T, Guo J, Wang W. The Long Noncoding RNA Gall Bladder Cancer-Associated Suppressor of Pyruvate Carboxylase Inhibits the Proliferation, Migration, and Invasion of Colorectal Cancer Cells and Induces Their Apoptosis. Biochem Genet 2024:10.1007/s10528-024-10786-6. [PMID: 38609669 DOI: 10.1007/s10528-024-10786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to determine the role of the long noncoding RNA (lncRNA) gall bladder cancer-associated suppressor of pyruvate carboxylase (SOD2-1) in the progression of colorectal cancer (CRC). A total of 23 pairs of specimens, including CRC tissues and adjacent normal tissues, were collected, and the expression of lncRNA SOD2-1 (lnc-SOD2-1) was measured. lnc-SOD2-1 function was examined using HCT15 and HCT116 cells. A lnc-SOD2-1 overexpression vector was designed and transfected into both cell lines. MTS and colony formation assays were used to determine cell viability. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays were performed to measure apoptosis. Cell migration and invasion were evaluated using the Transwell assay. Migration and invasion markers were validated using quantitative reverse transcription-polymerase chain reaction and western blot analysis. The results indicated that the expression of lnc-SOD2-1 was downregulated in CRC tissues. lnc-SOD2-1 overexpression evidently decreased cell viability and led to the formation of fewer cell colonies. lnc-SOD2-1 overexpression induced ~ twofold higher apoptosis than the control group. lnc-SOD2-1 overexpression reduced the proportion of migratory and invasive cells to 50% and 75% of the control group, respectively. lnc-SOD2-1 overexpression significantly decreased the expression of matrix metalloproteinase-2 and -9. In conclusion, lnc-SOD2-1 may act as a tumor suppressor that inhibits the proliferation, migration, and invasion of CRC cells and induces their apoptosis.
Collapse
Affiliation(s)
- Tingting Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianian Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou, 510260, China.
| |
Collapse
|
7
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Travis G, McGowan EM, Simpson AM, Marsh DJ, Nassif NT. PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers (Basel) 2023; 15:4954. [PMID: 37894321 PMCID: PMC10605164 DOI: 10.3390/cancers15204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.
Collapse
Affiliation(s)
- Glena Travis
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| | - Eileen M. McGowan
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ann M. Simpson
- Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Najah T. Nassif
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| |
Collapse
|
9
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Baljon KJ, Ramaiah P, Saleh EAM, Al-Dolaimy F, Al-Dami FH, Gandla K, Alkhafaji AT, Abbas AHR, Alsaalamy AH, Bisht YS. LncRNA PVT1: as a therapeutic target for breast cancer. Pathol Res Pract 2023; 248:154675. [PMID: 37531833 DOI: 10.1016/j.prp.2023.154675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
A significant number of women are identified with breast cancer (BC) every year, making it among the most prevalent malignancies and one of the leading causes of mortality globally. Despite significant progress in understanding BC pathogenesis and treatment options, there is still a need to identify new therapeutic targets and develop more effective treatments. LncRNAs have been discovered as biomarkers and a promising target for various cancers, including BC. PVT1 is a particular one of these lncRNAs, and research has indicated that it has a significant impact on the appearance and progression of BC.PVT1 is an attractive therapeutic target for BC due to its role in promoting cancer cell growth, metastasis and invasion. In addition to its potential as a treatment strategy, PVT1 may also have diagnostic value in BC. In this article, we will discuss targeting PVT1 as a treatment strategy for BC.
Collapse
Affiliation(s)
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry,College of Arts and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | - Farqad Hassan Al-Dami
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | | | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
11
|
Zhang GZ, Gao YL. BRWMC: Predicting lncRNA-disease associations based on bi-random walk and matrix completion on disease and lncRNA networks. Comput Biol Chem 2023; 103:107833. [PMID: 36812824 DOI: 10.1016/j.compbiolchem.2023.107833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Many experiments have proved that long non-coding RNAs (lncRNAs) in humans have been implicated in disease development. The prediction of lncRNA-disease association is essential in promoting disease treatment and drug development. It is time-consuming and laborious to explore the relationship between lncRNA and diseases in the laboratory. The computation-based approach has clear advantages and has become a promising research direction. This paper proposes a new lncRNA disease association prediction algorithm BRWMC. Firstly, BRWMC constructed several lncRNA (disease) similarity networks based on different measurement angles and fused them into an integrated similarity network by similarity network fusion (SNF). In addition, the random walk method is used to preprocess the known lncRNA-disease association matrix and calculate the estimated scores of potential lncRNA-disease associations. Finally, the matrix completion method accurately predicts the potential lncRNA-disease associations. Under the framework of leave-one-out cross-validation and 5-fold cross-validation, the AUC values obtained by BRWMC are 0.9610 and 0.9739, respectively. In addition, case studies of three common diseases show that BRWMC is a reliable method for prediction.
Collapse
Affiliation(s)
- Guo-Zheng Zhang
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Ying-Lian Gao
- Qufu Normal University Library, Qufu Normal University, Rizhao, China.
| |
Collapse
|
12
|
Expression analysis of novel long non-coding RNAs for invasive ductal and invasive lobular breast carcinoma cases. Pathol Res Pract 2023; 244:154391. [PMID: 36868097 DOI: 10.1016/j.prp.2023.154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
AIM Long non-coding RNAs (LncRNAs) serve as important regulatory molecules of gene expression and protein functionality at multiple biological levels, and their deregulation plays a key role in tumorigenesis including in breast cancer metastasis. Therefore, in this study, we aim to compare the expression of novel lncRNAs in the landscape of invasive ductal carcinoma (IDC) and invasive lobular (ILC) carcinoma of breast. MAIN METHODS We have designed an in-silico approach to find the lncRNAs that regulate the breast cancer. Then, we used the clinical samples to carry out the verification of our in silico finding. In the present study, the tissues of breast cancer were deparaffinized. RNA was extracted by the TRIzole method. After synthesizing cDNA from the extracted RNA, expression levels of lncRNAs were analyzed by qPCR using primers specifically designed and validated for the targeted lncRNAs. In this study, breast biopsy materials from 41 female patients with IDC and 10 female patients with ILC were examined histopathological and expression changes of candidate lncRNAs were investigated in line with the findings. The results were analyzed using IBM SPSS Statistics 25 version. RESULTS The mean age of the cases was 53.78 ± 14.96. The minimum age was 29, while the maximum age was 87. While 27 of the cases were pre-menopausal, 24 cases were post-menopausal. The number of hormone receptor-positive cases was found to be 40, 35, and 27 for ER, PR, and cerb2/neu, respectively. While the expressions of LINC00501, LINC00578, LINC01209, LINC02015, LINC02584, ABCC5-AS1, PEX5L-AS2, SHANK2-AS3 and SOX2-OT showed significant differences (p < 0.05), the expressions of LINC01206, LINC01994, SHANK2-AS1, and TPRG1-AS2 showed no significant differences (p > 0.05). In addition, it was determined that the regulation of all lncRNAs could be able to involve in the development of cancer such as the NOTCH1, NFKB, and estrogen receptor signalings. CONCLUSION As a result, it was thought that the discovery of novel lncRNAs might be an important player in the diagnosis, prognosis and therapeutic development of breast cancer.
Collapse
|
13
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
14
|
Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, Alavi MS, Moghbeli M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res 2023; 56:1. [PMID: 36597150 PMCID: PMC9808980 DOI: 10.1186/s40659-022-00411-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Rahimi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Sadat Alavi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mathur R, Jha NK, Saini G, Jha SK, Shukla SP, Filipejová Z, Kesari KK, Iqbal D, Nand P, Upadhye VJ, Jha AK, Roychoudhury S, Slama P. Epigenetic factors in breast cancer therapy. Front Genet 2022; 13:886487. [PMID: 36212140 PMCID: PMC9539821 DOI: 10.3389/fgene.2022.886487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non—coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
Collapse
Affiliation(s)
- Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaurav Saini
- Department of Civil Engineering, Netaji Subhas University of Technology, Delhi, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, India
| | - Zita Filipejová
- Small Animal Clinic, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Parma Nand
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Petr Slama
- Department of Animal Morphology, Physiology, and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
16
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Akbari Dilmaghani N. A review on the role of PTENP1 in human disorders with an especial focus on tumor suppressor role of this lncRNA. Cancer Cell Int 2022; 22:207. [PMID: 35655204 PMCID: PMC9161594 DOI: 10.1186/s12935-022-02625-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
PTENP1 is a long non-coding RNA which has been regarded as a pseudogene of the PTEN tumor suppressor gene. However, it has been shown to be a biologically active transcript that can function as a competing endogenous RNA and enhance expression of PTEN protein. This lncRNA has two transcripts, namely PTENP1-202 and PTENP1-202 with sizes of 3996 and 1215 bps, respectively. PTENP1 acts as a sponge for some PETN-targeting miRNAs, such as miR-17, miR-20a, miR-19b, miR-106b, miR-200c, miR-193a-3p, miR-499-5p and miR-214. Besides, it can affect miR-20a/PDCD4, miR-27a-3p/EGR1, miR-17‐5p/SOCS6 and miR-19b/TSC1 axes. This long non-coding RNA participates in the pathoetiology of several types of cancers as well as non-malignant conditions such as alcohol-induced osteopenia, insulin resistance, osteoporosis, sepsis-associated cardiac dysfunction and spinal cord injury. In the current review, we elucidate the role of PTENP1 in human disorders, particularly malignant conditions based on evidence acquired from cell line assays, animal studies and investigations on human samples.
Collapse
|
17
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Selem NA, Youness RA, Gad MZ. What is beyond LncRNAs in breast cancer: A special focus on colon cancer-associated Transcript-1 (CCAT-1). Noncoding RNA Res 2021; 6:174-186. [PMID: 34938928 PMCID: PMC8666458 DOI: 10.1016/j.ncrna.2021.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play a vital role in the process of malignant transformation. In breast cancer (BC), lncRNAs field is currently under intensive investigations. Yet, the role of lncRNAs as promising diagnostic and/or prognostic biomarkers and as therapeutic target/tool among BC patients still needs a special focus from the biomedical scientists. In BC, triple negative breast cancer patients (TNBC) are the unlucky group as they are always represented with the worst prognosis and the highest mortality rates. For that reason, a special focus on TNBC and associated lncRNAs was addressed in this review. Colon cancer-associated transcript 1 (CCAT-1) is a newly discovered oncogenic lncRNA that has been emerged as a vital biomarker for diagnosis, prognosis and therapeutic interventions in multiple malignancies and showed differential expression among TNBC patients. In this review, the authors shed the light onto the general role of lncRNAs in BC and the specific functional activities, molecular mechanisms, competing endogenous ncRNA role of CCAT-1 in TNBC.
Collapse
Affiliation(s)
- Noha A. Selem
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
19
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
20
|
Lin X, Xiang X, Feng B, Zhou H, Wang T, Chu X, Wang R. Targeting Long Non-Coding RNAs in Hepatocellular Carcinoma: Progress and Prospects. Front Oncol 2021; 11:670838. [PMID: 34249710 PMCID: PMC8267409 DOI: 10.3389/fonc.2021.670838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma is the fifth-ranked cancer worldwide with a relatively low five-year survival rate. Long non-coding RNAs are a group of RNAs with remarkable aberrant expression which could act on multiple bioprocesses and ultimately impact upon tumor proliferation, invasion, migration, metastasis, apoptosis, and therapy resistance in cancer cells including hepatocellular carcinoma cells. In recent years, long non-coding RNAs have been reported to be indispensable targets in clinical target therapy to stop the growth of cancer and prolong the lifespan of patients with hepatocellular carcinoma. In this review, we enumerate the signaling pathways and life activities affected by long non-coding RNAs in hepatocellular carcinoma cells to illustrate the role of long non-coding RNAs in the development and therapy resistance of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaosong Xiang
- Affiliated Jingling Hospital Research Institution of General Surgery, School of Medicine, Nanjing University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Fang K, Hu C, Zhang X, Hou Y, Gao D, Guo Z, Li L. LncRNA ST8SIA6-AS1 promotes proliferation, migration and invasion in breast cancer through the p38 MAPK signalling pathway. Carcinogenesis 2021; 41:1273-1281. [PMID: 31784750 DOI: 10.1093/carcin/bgz197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regarded as important functional regulators of various biological processes and are also known to be involved in the occurrence and development of human cancers, including breast cancer (BC). In our present study, the RNA expression profiling data for a large cohort of human BC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the differentially expressed lncRNAs were screened out. We found that the expression of ST8SIA6-AS1 was elevated in BC tumour tissues compared with the adjacent normal tissues in the samples from the TCGA and GEO datasets, as well as in 138 BC tissue samples obtained by us. The high expression of ST8SIA6-AS1 was associated with estrogen receptor-negative, progesterone receptor-negative, advanced tumour-node-metastasis stage and worse survival in BC patients. In vitro functional studies revealed that high expression of ST8SIA6-AS1 promoted proliferation, invasion and migration of BC cell lines. The results of the in vivo studies indicated that upregulation of ST8SIA6-AS1 promoted xenograft tumour growth of BC. Mechanistically, ST8SIA6-AS1 regulated AKT1 and p38 mitogen-activated protein kinase (MAPK) gene expression by affecting their mRNA and protein levels, respectively, and it also affected the phosphorylation of AKT1 protein. Rescue experiments indicated that ST8SIA6-AS1 promoted BC cell proliferation, invasion and migration in a p38 MAPK signalling-mediated manner. Together, our data suggest that ST8SIA6-AS1 plays an important role in the occurrence and development of BC and may therefore serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Kai Fang
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Caixia Hu
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yafei Hou
- Department of Immunology, Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Danfeng Gao
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lihua Li
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Liu JX, Gao MM, Cui Z, Gao YL, Li F. DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization. BMC Bioinformatics 2021; 22:241. [PMID: 33980147 PMCID: PMC8114493 DOI: 10.1186/s12859-020-03868-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In the development of science and technology, there are increasing evidences that there are some associations between lncRNAs and human diseases. Therefore, finding these associations between them will have a huge impact on our treatment and prevention of some diseases. However, the process of finding the associations between them is very difficult and requires a lot of time and effort. Therefore, it is particularly important to find some good methods for predicting lncRNA-disease associations (LDAs). RESULTS In this paper, we propose a method based on dual sparse collaborative matrix factorization (DSCMF) to predict LDAs. The DSCMF method is improved on the traditional collaborative matrix factorization method. To increase the sparsity, the L2,1-norm is added in our method. At the same time, Gaussian interaction profile kernel is added to our method, which increase the network similarity between lncRNA and disease. Finally, the AUC value obtained by the experiment is used to evaluate the quality of our method, and the AUC value is obtained by the ten-fold cross-validation method. CONCLUSIONS The AUC value obtained by the DSCMF method is 0.8523. At the end of the paper, simulation experiment is carried out, and the experimental results of prostate cancer, breast cancer, ovarian cancer and colorectal cancer are analyzed in detail. The DSCMF method is expected to bring some help to lncRNA-disease associations research. The code can access the https://github.com/Ming-0113/DSCMF website.
Collapse
Affiliation(s)
- Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Ming-Ming Gao
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Zhen Cui
- School of Computer Science, Qufu Normal University, Rizhao, China
| | - Ying-Lian Gao
- Qufu Normal University Library, Qufu Normal University, Rizhao, China
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao, China
| |
Collapse
|
23
|
Zhang M, Wang H, Zhang X, Liu F. miR‑653‑5p suppresses the growth and migration of breast cancer cells by targeting MAPK6. Mol Med Rep 2021; 23:200. [PMID: 33495824 PMCID: PMC7821282 DOI: 10.3892/mmr.2021.11839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the worldwide leading cause of cancer‑related deaths among women. Increasing evidence has demonstrated that microRNAs (miRNAs) play critical roles in the carcinogenesis and progression of breast cancer. miR‑653‑5p was previously reported to be involved in cell proliferation and apoptosis. However, the role of miR‑653‑5p in the progression of breast cancer has not been studied. In the present study, it was found that overexpression of miR‑653‑5p significantly inhibited the proliferation, migration and invasion of breast cancer cells in vitro. Moreover, overexpression of miR‑653‑5p promoted cell apoptosis in breast cancer by regulating the Bcl‑2/Bax axis and caspase‑9 activation. Additionally, the epithelial‑mesenchymal transition and activation of the Akt/mammalian target of rapamycin signaling pathway were also inhibited by miR‑653‑5p. Furthermore, the data demonstrated that miR‑653‑5p directly targeted mitogen‑activated protein kinase 6 (MAPK6) and negatively regulated its expression in breast cancer cells. Upregulation of MAPK6 could overcome the inhibitory effects of miR‑653‑5p on cell proliferation and migration in breast cancer. In conclusion, this study suggested that miR‑653‑5p functions as a tumor suppressor by targeting MAPK6 in the progression of breast cancer, and it may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Radiotherapy Technology, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R China
| | - Hongwei Wang
- Department of Operating Theatre, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R China
| | - Xiaomei Zhang
- Department of Gynaecology, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R China
| | - Fengping Liu
- Department of Operating Theatre, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R China
| |
Collapse
|
24
|
HAUBRW: Hybrid algorithm and unbalanced bi-random walk for predicting lncRNA-disease associations. Genomics 2020; 112:4777-4787. [PMID: 33348478 DOI: 10.1016/j.ygeno.2020.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023]
Abstract
An increasing number of research shows that long non-coding RNA plays a key role in many important biological processes. However, the number of disease-related lncRNAs found by researchers remains relatively small, and experimental identification is time consuming and labor intensive. In this study, we propose a novel method, namely HAUBRW, to predict undiscovered lncRNA-disease associations. First, the hybrid algorithm, which combines the heat spread algorithm and the probability diffusion algorithm, redistributes the resources. Second, unbalanced bi-random walk, is used to infer undiscovered lncRNA disease associations. Seven advanced models, i.e. BRWLDA, DSCMF, RWRlncD, IDLDA, KATZ, Ping's, and Yang's were compared with our method, and simulation results show that the AUC of our method is more perfect than the other models. In addition, case studies have shown that HAUBRW can effectively predict candidate lncRNAs for breast, osteosarcoma and cervical cancer. Therefore, our approach may be a good choice in future biomedical research.
Collapse
|
25
|
Song Y, Li L, Chen J, Chen H, Cui B, Feng Y, Zhang P, Zhang Q, Xia Y, Luo M. Thioridazine hydrochloride: an antipsychotic agent that inhibits tumor growth and lung metastasis in triple-negative breast cancer via inducing G0/G1 arrest and apoptosis. Cell Cycle 2020; 19:3521-3533. [PMID: 33315498 DOI: 10.1080/15384101.2020.1850969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ABBREVIATIONS CCK8: Cell Counting Kit-8; CDK: cyclin-dependent kinase; DRD2: dopamine D2 receptor; ERK1/2: extracellular signal-regulated kinase 1/2; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; H&E: hematoxylin and eosin; MMP: membrane potential; NAC: N-acetyl-L-cysteine; PI: Propidium iodide; Rh123: rhodamine-123; ROS: reactive oxygen species; TBST: tris-buffered saline containing 0.1% Tween 20 TNBC: Triple-negative breast cancer; Thi-hyd: Thioridazine hydrochloride.
Collapse
Affiliation(s)
- Yanlin Song
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China.,West China School of Medicine, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Lu Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Jiao Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Hongli Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Bomiao Cui
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Yun Feng
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Ping Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Qiangsheng Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University , Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University , Chengdu Sichuan, 610041, China
| | - Min Luo
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| |
Collapse
|
26
|
Role and the molecular mechanism of lncRNA PTENP1 in regulating the proliferation and invasion of cervical cancer cells. Gene Ther 2020; 29:464-475. [PMID: 32973352 DOI: 10.1038/s41434-020-00189-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer ranks second in the major causes of cancer-relevant death in female population worldwide. It is extensively reported that lncRNAs are implicated in biological activities of diverse cancers. LncRNA PTENP1 has been recently reported as a tumor suppressor in several malignancies. However, the pathophysiological function and the potential regulatory mechanism of PTENP1 in cervical cancer have never been studied. In this research, PTENP1 was pronouncedly downregulated in cervical cancer tissues, and low PTENP1 level was tightly linked to advanced stage and poor prognosis in cervical cancer. Overexpressing PTENP1 inhibited cervical cancer progression by suppressing cell growth, motility and epithelial-to-mesenchymal transition (EMT). PTENP1 was confirmed to decoy miR-27a-3p to upregulate EGR1 expression in cervical cancer cells. Additionally, EGR1 knockdown reversed the repressive effect of PTENP1 overexpression on cervical cancer progression. In a word, current study was the first to uncover the biological functions of PTENP1 as well as its modulatory mechanism in cervical cancer, which may offer a new potent target for treating patients with cervical cancer.
Collapse
|
27
|
Hu M, Yang J. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p. Cancer Cell Int 2020; 20:449. [PMID: 32943997 PMCID: PMC7488500 DOI: 10.1186/s12935-020-01538-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to explore the role of long noncoding RNA urothelial carcinoma-associated 1 (lncRNA UCA1) and its underlying mechanism in the radioresistance of prostate cancer (PCa). METHODS QRT-PCR was conducted to measure the expression of UCA1, microRNA-331-3p (miR-331-3p) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in PCa tissues and cells. The relative protein level was determined by western blot assay. Cell proliferation and apoptosis were detected by MTT, colony formation assay, and flow cytometry, respectively. The target interaction between miR-331-3p and UCA1 or EIF4G1 was predicted through bioinformatics analysis, and verified by dual-luciferase reporter gene assay system. RESULTS The high levels of UCA1 and EIF4G1 as well as the low level of miR-331-3p were observed in PCa tissues and cell lines. UCA1 and EIF4G1 expression were significantly upregulated by Gy radiation treatement. UCA1 or EIF4G1 knockdown repressed cell growth and enhanced cell apoptosis in 22RV1 and DU145 cells under radiation. Moreover, overexpression of EIF4G1 abolished UCA1 knockdown-induced effect on 6 Gy irradiated PCa cells. UCA1 sponged miR-331-3p to regulate EIF4G1 expression. CONCLUSIONS LncRNA UCA1 deletion suppressed the radioresistance to PCa by suppressing EIF4G1 expression via miR-331-3p. UCA1 acted as a potential regulator of radioresistance of PCa, providing a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Minhua Hu
- Department of Nursing College, Xi’an Medical University, Xi’an, 710021 Shaanxi Province China
| | - Jincheng Yang
- Department of Urology Surgery, The First People’s Hospital of Yinchuan, No. 4, Liqun West Street, Xingqing District, Yinchuan, 750004 Ningxia China
| |
Collapse
|
28
|
Fu J, Cai H, Wu Y, Fang S, Wang D. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis. Gene 2020; 755:144886. [DOI: 10.1016/j.gene.2020.144886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
29
|
Kerwin J, Khan I. Replication Study: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. eLife 2020; 9:e51019. [PMID: 32314732 PMCID: PMC7185998 DOI: 10.7554/elife.51019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/20/2020] [Indexed: 01/02/2023] Open
Abstract
As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Khan et al., 2015), that described how we intended to replicate selected experiments from the paper "A coding-independent function of gene and pseudogene mRNAs regulates tumour biology" (Poliseno et al., 2010). Here we report the results. We found PTEN depletion in the prostate cancer cell line DU145 did not detectably impact expression of the corresponding pseudogene PTENP1. Similarly, depletion of PTENP1 did not impact PTEN mRNA levels. The original study reported PTEN or PTENP1 depletion statistically reduced the corresponding pseudogene or gene (Figure 2G; Poliseno et al., 2010). PTEN and/or PTENP1 depletion in DU145 cells decreased PTEN protein expression, which was similar to the original study (Figure 2H; Poliseno et al., 2010). Further, depletion of PTEN and/or PTENP1 increased DU145 proliferation compared to non-targeting siRNA, which was in the same direction as the original study (Figure 2F; Poliseno et al., 2010), but not statistically significant. We found PTEN 3'UTR overexpression in DU145 cells did not impact PTENP1 expression, while the original study reported PTEN 3'UTR increased PTENP1 levels (Figure 4A; Poliseno et al., 2010). Overexpression of PTEN 3'UTR also statistically decreased DU145 proliferation compared to controls, which was similar to the findings reported in the original study (Figure 4A; Poliseno et al., 2010). Differences between the original study and this replication attempt, such as level of knockdown efficiency and cellular confluence, are factors that might have influenced the results. Finally, where possible, we report meta-analyses for each result.
Collapse
Affiliation(s)
- John Kerwin
- University of Maryland, College Park, United States
| | - Israr Khan
- Alamo Laboratories Inc, San Antonio, United States
| |
Collapse
|
30
|
Jin KT, Yao JY, Fang XL, Di H, Ma YY. Roles of lncRNAs in cancer: Focusing on angiogenesis. Life Sci 2020; 252:117647. [PMID: 32275935 DOI: 10.1016/j.lfs.2020.117647] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
Approximately 98% of the human genome consists of non-coding sequences that are classified into two classes by size: small non-coding RNAs (≤200 nucleotides) and long non-coding RNAs (≥200 nucleotides). Long non-coding RNAs (lncRNAs) are involved in various cellular events and act as guides, signals, decoys, and dynamic scaffolds. Due to their oncogenic and tumor suppressive roles, lncRNAs are important in cancer development and growth. LncRNAs play their roles by modulating cancer hallmarks, including DNA damage, metastasis, immune escape, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis. Angiogenesis is vital for solid tumors which guarantees their growth beyond 2 mm3. Tumor angiogenesis is a complex process and is regulated through interaction between pro-angiogenic and anti-angiogenic factors within the tumor microenvironment. There are accumulating evidence that different lncRNAs regulate tumor angiogenesis. In this paper, we described the functions and mechanisms of lncRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, Zhejiang Province, PR China
| | - Jia-Yu Yao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Xing-Liang Fang
- Acupuncture and Tuina Clinic, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Hua Di
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing 312000, Zhejiang Province, PR China.
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
31
|
Lou W, Ding B, Fu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front Cell Dev Biol 2020; 8:85. [PMID: 32185172 PMCID: PMC7058547 DOI: 10.3389/fcell.2020.00085] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudogenes, abundant in the human genome, are traditionally considered as non-functional “junk genes.” However, recent studies have revealed that pseudogenes act as key regulators at DNA, RNA or protein level in diverse human disorders (including cancer), among which pseudogene-derived long non-coding RNA (lncRNA) transcripts are extensively investigated and has been reported to be frequently dysregulated in various types of human cancer. Growing evidence demonstrates that pseudogene-derived lncRNAs play important roles in cancer initiation and progression by serving as competing endogenous RNAs (ceRNAs) through competitively binding to shared microRNAs (miRNAs), thus affecting both their cognate genes and unrelated genes. Herein, we retrospect those current findings about expression, functions and potential ceRNA mechanisms of pseudogene-derived lncRNAs in human cancer, which may provide us with some crucial clues in developing potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Zhang T, Hu H, Yan G, Wu T, Liu S, Chen W, Ning Y, Lu Z. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat 2020; 18:1533033819843889. [PMID: 30983509 PMCID: PMC6466467 DOI: 10.1177/1533033819843889] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer, one of the most common diseases among women, is regarded as a
heterogeneous and complicated disease that remains a major public health concern.
Recently, owing to the development of next-generation sequencing technologies, long
non-coding RNAs have received extensive attention. Numerous studies reveal that long
non-coding RNAs are playing important roles in tumor development. Although the biological
function and molecular mechanisms of long non-coding RNAs remain enigmatic, recent
researchers have demonstrated that an array of long non-coding RNAs express abnormally in
cancers, including breast cancer. Herein, we summarized the latest literature about long
non-coding RNAs in breast cancer, with a particular focus on the multiple molecular roles
of regulatory long non-coding RNAs that regulate cell proliferation, invasion, metastasis,
and apoptosis.
Collapse
Affiliation(s)
- Tianzhu Zhang
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Yan
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Tangwei Wu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- 2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongxin Lu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Lu X, Chen F, Yuan D, He X, Liu X, Zi Y, Lu Y. Retracted Article: Exosome-derived PTENP1 suppresses cisplatin resistance of bladder cancer (BC) by suppressing cell proliferation, migration and inducing apoptosis via the miR-103a/PDCD4 axis. RSC Adv 2019; 9:37642-37651. [PMID: 35542268 PMCID: PMC9075761 DOI: 10.1039/c9ra07823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
Bladder cancer (BC) is a lethal cancer that threatens the health of millions of people. Chemotherapy drug resistance, for example, cisplatin (DDP) resistance, is a huge limitation for BC therapy. PTEN pseudogene-1 (PTENP1) has been identified as a significant biomarker of multiple cancers. Therefore, it is essential to illuminate the molecular mechanism of PTENP1 in BC cell DDP resistance and progression. Serum exosomes were isolated using an ExoQuick precipitation kit. Serum exosomes were round-shaped vesicles of 100 ± 60 nm in size. The expression of PTENP1 was down-regulated in serum exosomes isolated from cisplatin non-responsive patients compared with responsive patients. ROC curves certified the diagnostic value of PTENP1. Apparently, PTENP1 transfection inhibited DDP-resistant BC cell proliferation, migration, cisplatin resistance and facilitated apoptosis. Next, we discovered that PTENP1 was a sponge of miR-103a, while PDCD4 was a target of miR-103a. More importantly, PTENP1 regulated DDP-resistant cell viability, migration, apoptosis and cisplatin resistance by interacting with the miR-103a/PDCD4 axis. In addition, PTENP1 hindered tumor growth of cisplatin-resistant mice. Exosome-derived PTENP1 suppressed the DDP resistance of BC by inhibiting cell proliferation, migration and promoting apoptosis through regulating the miR-103a/PDCD4 axis, representing a targeted therapy for DDP-resistant BC patients.
Collapse
Affiliation(s)
- Xingre Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Fengyu Chen
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Diao Yuan
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiang He
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiaowen Liu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yunju Zi
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yu Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| |
Collapse
|
34
|
Chang H, Cai Z, Roberts TM. The Mechanisms Underlying PTEN Loss in Human Tumors Suggest Potential Therapeutic Opportunities. Biomolecules 2019; 9:biom9110713. [PMID: 31703360 PMCID: PMC6921025 DOI: 10.3390/biom9110713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, we will first briefly describe the diverse molecular mechanisms associated with PTEN loss of function in cancer. We will then proceed to discuss the molecular mechanisms linking PTEN loss to PI3K activation and demonstrate how these mechanisms suggest possible therapeutic approaches for patients with PTEN-null tumors.
Collapse
Affiliation(s)
- Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- KIST-DFCI On-Site Lab, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: ; Tel.: +1-617-632-3049
| |
Collapse
|
35
|
Wang BF, Zheng LF, Xu XH, Huang F. Expression of gastrin in colon cancer and its effect on human colon cancer cell proliferation and P38 signal transduction pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:1062-1069. [DOI: 10.11569/wcjd.v27.i17.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a common malignant tumor of the digestive system in China. The early diagnosis is low due to nonspecific symptoms, which leads to the loss of chance of radical surgery and a high mortality rate, greatly harming patients' life and health. Gastrin is a hormone that is mainly secreted from G cells in the gastrointestinal tract. Upon binding to gastrin receptors, it stimulates gastric acid secretion and promotes gastrointestinal mucosal growth. Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine protein kinases that are activated by hormones such as gastrin and are responsible for signal transduction between the cell surface and the nucleus.
AIM To analyze the expression of gastrin in CC patients, and to investigate the inhibitory effect of gastrin receptor antagonist on human CC cell line and the P38 signal transduction pathway.
METHODS From January 2016 to October 2018, 30 CC specimens collected from the Department of Pathology of our hospital were divided into poorly, moderately, and highly differentiated specimens according to the criteria of the World Health Organization's malignant tumor differentiation. The immunohistochemical technique was used to detect the expression of gastrin in these specimens. The human CC cell line SW480 was cultured in vitro, and the cells were divided into a control group (no drug treatment), a gastrin group (6.25-200.00 mg/L of gastrin was added), a proglumide group (8.00-256.00 mg/L of proglumide for treatment), and a gastrin plus proglumide group (12.5 mg/L gastrin and 8.00-256.00 mg/L proglumide for treatment). The expression of gastrin receptor/cholecystokinin-B receptor in SW480 cells was detected, and SW480 cell viability, proliferation index, and expression of P38 signal transduction pathway molecules (P38 protein, phosphorylated P38 protein, Bcl-2, and BAX) in different groups were compared.
RESULTS The higher the degree of differentiation of CC tissues, the higher the positive rate of gastrin expression. The OD values of SW480 cells treated with gastrin at concentrations ranging from 6.25 to 200.00 mg/L were significantly higher than those in control cells (P < 0.05). Gastrin at a concentration of 12.50 mg resulted in the highest OD value in SW480 cells (P < 0.05). There was no significant difference in OD values of SW480 cells treated with gastrin at concentrations between 25.00 and 200.00 mg/L (P > 0.05). There was no significant difference in OD values of SW480 cells treated with glutamine at concentrations of 8.00-256.00 mg/L (P > 0.05). Gastrin at 12.50 mg/L combined with 16.00 mg/L of proglumide resulted in the lowest OD value in SW480 cells, which was significantly lower than that in the control group (P < 0.05), but this significant difference disappeared with the increase of proglumide concentration (P > 0.05). The cell proliferation index of the gastrin group (12.50 mg/L) was significantly higher than those of the proglumide group (16.00 mg/L) and the gastrin plus proglumide group (12.5 mg/L + 16.00 mg/L) (P < 0.05). The levels of P38 protein expression and phosphorylation and BAX protein expression in the gastrin group (12.50 mg/L) were significantly lower than those of the control group, proglumide group (16.00 mg/L), and gastrin plus proglumide group (12.5 mg/L + 16.00 mg/L), while Bcl-2 protein expression was significantly higher that in the control group, proglumide group (16.00 mg/L), and gastrin plus proglumide group (12.5 mg/L + 16.00 mg/L) (P < 0.05).
CONCLUSION Gastrin can inhibit the apoptosis of human CC cell line SW480, and its expression in CC is related to the degree of tumor differentiation. The higher the degree of differentiation, the higher the expression level. Gastrin receptor antagonist can antagonize the proliferative effect of gastrin via mechanisms possibly related to up-regulation of P38 expression, phosphorylation of P38, and BAX expression and down-regulation of Bcl-2 expression.
Collapse
Affiliation(s)
- Bin-Feng Wang
- Department of Clinical Laboratory, Jinxi Hospital of Jinhua City Center, First People's Hospital, Xiangcheng District, Jinhua 321075, Zhejiang Province, China
| | - Li-Fang Zheng
- Department of Clinical Laboratory, Jinxi Hospital of Jinhua City Center, First People's Hospital, Xiangcheng District, Jinhua 321075, Zhejiang Province, China
| | - Xiu-Hua Xu
- Department of Clinical Laboratory, Jinxi Hospital of Jinhua City Center, First People's Hospital, Xiangcheng District, Jinhua 321075, Zhejiang Province, China
| | - Feng Huang
- Department of Gastroenterology, Tianjin Dongli Hospital, Tianjin 300300, China
| |
Collapse
|
36
|
The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA. Clin Sci (Lond) 2019; 133:1439-1455. [PMID: 31235554 DOI: 10.1042/cs20190156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The long non-coding RNA (lncRNA) PTENP1 is a pseudogene of phosphatase and tensin homologue deleted on chromosome ten (PTEN), has been implicated in smooth muscle cell (SMC) proliferation and apoptosis. PTENP1 is the pseudogene of PTEN. However, it is unclear whether and how PTENP1 functions in the proliferation and apoptosis of human aortic SMCs (HASMCs). Here, we hypothesised that PTENP1 inhibits HASMC proliferation and enhances apoptosis by promoting PTEN expression. PCR analysis and Western blot assays respectively showed that both PTENP1 and PTEN were up-regulated in human aortic dissection (AD) samples. PTENP1 overexpression significantly increased the protein expression of PTEN, promoted apoptosis and inhibited the proliferation of HASMCs. PTENP1 silencing exhibited the opposite effects and mitigated H2O2-induced apoptosis of HASMCs. In an angiotensin II (Ang II)-induced mouse aortic aneurysm (AA) model, PTENP1 overexpression potentiated aortic SMC apoptosis, exacerbated aneurysm formation. Mechanistically, RNA pull-down assay and a series of luciferase reporter assays using miR-21 mimics or inhibitors identified PTENP1 as a molecular sponge for miR-21 to endogenously compete for the binding between miR-21 and the PTEN transcript, releasing PTEN expression. This finding was further supported by in vitro immunofluorescent evidence showing decreased cell apoptosis upon miR-21 mimic administration under baseline PTENP1 overexpression. Ex vivo rescue of PTEN significantly mitigated the SMC apoptosis induced by PTENP1 overexpression. Finally, Western blot assays showed substantially reduced Akt phosphorylation and cyclin D1 and cyclin E levels with up-regulated PTENP1 in HASMCs. Our study identified PTENP1 as a mediator of HASMC homeostasis and suggests that PTENP1 is a potential target in AD or AA intervention.
Collapse
|
37
|
Meng B, Xing Y, Li H, Gao F, Liu YC. Knockdown of Long Noncoding RNA POU5F1B Promotes Radiosensitivity in Esophageal Carcinoma. Med Sci Monit 2019; 25:1214-1219. [PMID: 30763293 PMCID: PMC6383439 DOI: 10.12659/msm.913066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND POU5F1B, serving as a carcinogen, participates in radiosensitivity of several tumors. However, in esophageal cancer, its potential mechanism and function in regulating radiosensitivity remain unclear. MATERIAL AND METHODS The expression level of POU5F1B was detected in plasma of esophageal tumor patients and cancer cell lines. The effect of POU5F1B knockdown on cell proliferation and colony formation was determined using CCK-8 assay and colony formation assay. Cell apoptosis rate was detected by flow cytometry. RESULTS POU5F1B expression level declined after radiotherapy in the plasma of esophageal cancer patients (p=0.025). Compared with HEEPIC, the level of POU5F1B was upregulated in ECA109 (p<0.01), ECA9706 (p<0.01), KYSE410 (p<0.01), and KYSE510 (p=0.036). The silencing of POU5F1B played a role in inhibiting colony formation. After radiotherapy, the apoptosis rates in the ECA109 with 4Gy si-POU5F1B group and 4Gy si-NC group were 39.1±0.1% and 35.3±0.1%, respectively (p=0.0193). The rate was 21.00±0.1 and 29.1±0.1% (p<0.0072) in the si-NC group and si-POU5F1B group, respectively. For proliferation rate, 4Gy si-POU5F1B ECA109 performed better than 4Gy si-NC. CONCLUSIONS Radiotherapy contributed to the decline in the expression level of POU5F1B in plasma, which was upregulated in ECA109, ECA9706, KYSE410, and KYSE510, but not in HEEPIC. The knockdown of POU5F1B increased the radiosensitivity of esophageal cancer cell lines.
Collapse
Affiliation(s)
- Bi Meng
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yao Xing
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hao Li
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Fei Gao
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yang Chen Liu
- Taixing People's Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
38
|
Hu S, Xu L, Li L, Luo D, Zhao H, Li D, Peng B. Overexpression of lncRNA PTENP1 suppresses glioma cell proliferation and metastasis in vitro. Onco Targets Ther 2018; 12:147-156. [PMID: 30613153 PMCID: PMC6306071 DOI: 10.2147/ott.s182537] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioma is one of the most common malignancies of the central nervous system in adults. The lncRNA PTEN pseudogene-1 (PTENP1) has been reported to play an important role in the development and progression of various cancers. However, the molecular mechanism by which lncRNA PTENP1 affects the development and progression of gliomas remains unclear. MATERIALS AND METHODS The levels of PTENP1 expression in glioma tissues and normal brain tissues were detected by quantitative real-time PCR. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining assays were performed to detect cell proliferation. Flow cytometry was used to analyze cell cycle progression. Transwell assay and scratch test were used to detect cell migration and invasion, and Western blot studies were performed to detect protein expression. RESULTS Our results showed that expression of lncRNA PTENP1 was decreased in glioma tissues when compared with normal brain tissues. Overexpression of PTENP1 suppressed SHG44 and U251 cell proliferation and significantly decreased the numbers of S-phase cells. Furthermore, the invasion and migration abilities of SHG44 and U251 cells were reduced after being transfected with a PTENP1 overexpression plasmid. Overexpression of PTENP1 induced the expression of p21 protein and suppressed the p38 signaling pathway. CONCLUSION Our study investigated the function of PTENP1 in glioma and provided new insights for treating that malignancy.
Collapse
Affiliation(s)
- Su Hu
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
| | - Li Xu
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
- Department of Neurosurgery, The Central People's Hospital of Zhanjiang, Zhanjiang 524045, Guangdong, People's Republic of China
| | - Lihua Li
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
| | - Dongdong Luo
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
| | - Hailin Zhao
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
| | - Dan Li
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
| | - Biao Peng
- Department of Neurosurgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, People's Republic of China,
| |
Collapse
|
39
|
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol 2018; 234:10080-10100. [PMID: 30537129 DOI: 10.1002/jcp.27941] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is "competing endogenous RNA (ceRNA)" which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the "ceRnome" as a new term in the present article for RNA research.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoumeh Sepahvand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis 2018; 9:1177. [PMID: 30518759 PMCID: PMC6281592 DOI: 10.1038/s41419-018-1222-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) have identified several loci harboring variants that affected the risk of colorectal cancer; however, the specific mechanisms by which germline variation influenced the tumorigenesis of colorectal cancer (CRC) remains unrevealed. We found the T>C variant of rs1317082, locating at the exon 1 of lncRNA RP11-362K14.5 (CCSlnc362), was predicted to be a protective locus for cancer. However, the specific role of CCSlnc362 and the interaction between CCSlnc362 and rs1317082 variation in colorectal cancer and its mechanisms remain unclear. Here we explored the expression and function of CCSlnc362 in CRC cells and tissues. We found lncRNA CCSlnc362 expression was significantly increased in CRC samples. Follow-up functional experiments elucidated that downregulation of CCSlnc362 inhibited cell proliferation, arrested cell cycle, and promoted apoptosis in CRC cells. The T>C variant of rs1317082 at CCSlnc362 exon 1 created a binding site for miR-4658 to reduce the expression of CCSlnc362 and thus decreased the susceptibility to CRC. Our findings have provided supporting evidence for the protective role of rs1317082 variation and the potential oncogenic role of lncRNA CCSlnc362 in CRC. The data shed new light on the relationship between germline variation, miRNAs, and lncRNAs and opened a new avenue for targeted therapy in CRC.
Collapse
|
41
|
Wei LQ, Li L, Lu C, Liu J, Chen Y, Wu H. Involvement of H19/miR-326 axis in hepatocellular carcinoma development through modulating TWIST1. J Cell Physiol 2018; 234:5153-5162. [PMID: 30362512 DOI: 10.1002/jcp.27319] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
Overexpression of long noncoding RNA (lncRNA) H19 has been observed in various cancers, which indicates that H19 exert important roles in the progression of carcinogenesis. MiR-326 has been reported to play tumor suppressive roles in multiple tumors. Recently, the competing endogenous RNA (ceRNA) hypothesis has implied that lncRNAs might function as molecular sponges for microRNAs in various cancers. However, the roles of H19/miR-326 in human hepatocellular carcinoma (HCC) still remain unclear. The aim of our study was to determine H19/miR-326 expression in HCC cells and investigate their roles in HCC development. We found that H19 was significantly elevated and miR-326 was decreased in HCC cells including Hep3B, HepG2, MHCC-97L, SK-hep1, Hun7, SMCC-7721 compared with LO2 cells, respectively. In the subsequent experiments, we observed that inhibition of H19 can repress HCC cell growth, migration, and invasion in vitro. H19 downregulation can increase miR-326 expression in HCC cells. Meanwhile, miR-326 mimics can also inhibit HCC progression, whereas miR-326 inhibitors exhibited a reverse phenomenon by modulating H19 expression. In addition, a negative association between H19 and miR-326 was predicted and confirmed. Furthermore, the transcription factor TWIST1 has been recognized as a significant regulator in tumor progression. Here, by performing bioinformatics analysis, TWIST1 was identified as a downstream target of miR-326. The findings of our study implied that lncRNA H19 can serve as a ceRNA to sponge miR-326 and modulate TWIST1 levels in HCC pathogenesis. Taken these together, these findings indicated that H19/miR-326/TWIST1 axis was involved in HCC development and can indicate a novel HCC target.
Collapse
Affiliation(s)
- Li-Qing Wei
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Lu
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Liu
- Operating Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yanhao Chen
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbin Wu
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers (Review). Int J Oncol 2018; 53:2343-2355. [PMID: 30272345 DOI: 10.3892/ijo.2018.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) usually refer to non-coding RNA transcripts >200 nucleotides in length. In terms of the full genomic transcript, the proportion of lncRNAs far exceeds that of coding RNA. Initially, lncRNAs were considered to be the transcriptional noise of genes, but it has since been demonstrated that lncRNAs serve an important role in the regulation of cellular activities through interaction with DNA, RNA and protein. Numerous studies have demonstrated that various intricate signaling pathways are closely related to lncRNAs. Here, we focus on a large number of studies regarding the interaction of lncRNAs with important signaling pathways. It is comprehensively illustrated that lncRNAs regulate key metabolic components and regulatory factors of signaling pathways to affect the biological activities of tumor cells. Evidence suggests that the abnormal expression or mutation of lncRNAs in human tumor cells, and their interaction with signaling pathways, may provide a basis and potential target for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wei Sun
- Department of Postgraduates, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Ying Shi
- Department of Obstetrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhifei Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiye Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Hanhui Cai
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
43
|
Chen C, Xia E, Bhandari A, Wang Y, Shen Y, Sindan N, Lin Y, Wang X, Yang F, Wang O. LncRNA CCND2-AS1 is up-regulated and regulates proliferation, migration, and invasion in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1453-1459. [PMID: 31938243 PMCID: PMC6958141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 06/10/2023]
Abstract
Many long non-coding RNAs (lncRNAs) have been found to exert influences on biological processes including tumorigenesis. Many lncRNAs have been reported as potential therapeutic targets and prognostic biomarkers in multiple cancers. CCND2 antisense RNA 1 (CCND2-AS1) is an lncRNA recently reported to be involved in the progression of glioma cancers. However, whether CCND2-AS1 is associated with progression of breast cancer remains unknown. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure CCND2-AS1 gene expression in breast cancer cell in lines. CCND2-AS1 expression was significantly over-expressed compared to normal breast epithelial cells. Gain-and loss-of-function experiments were performed in vitro to investigate the role of CCND2-AS1, where we found that CCND2-AS1 knockdown in MDA-MB-231 significantly suppressed cell proliferation, migration, and invasion. In contrast, CCND2-AS1 overexpression in BT-549 had the opposite effects. Our findings indicate that lncRNA CCND2-AS1 is a gene associated with breast cancer and might become a potential therapeutic target.
Collapse
Affiliation(s)
- Chengze Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Yanyan Shen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Namita Sindan
- Department of Reproductive Health Center, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, People’s Republic of China
| | - Yuehlung Lin
- Mathematical Sciences, University of NottinghamNingbo, Zhejiang, PR China
| | - Xiaoshang Wang
- School of International Studies, Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Fan Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, PR China
| |
Collapse
|
44
|
Chang L, Hu Z, Zhou Z, Zhang H. Retracted Article: SNHG3 promotes proliferation and invasion by regulating the miR-101/ZEB1 axis in breast cancer. RSC Adv 2018; 8:15229-15240. [PMID: 35541333 PMCID: PMC9080013 DOI: 10.1039/c8ra02090f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Dysregulated lncRNA expression contributes to the pathogenesis of human tumors via the lncRNAs functioning as oncogenes or tumor suppressors. Small nucleolar RNA host gene 3 (SNHG3) was demonstrated to be upregulated in breast cancer cells. However, the detailed roles and molecular mechanism of SNHG3 in breast cancer are largely unknown. Methods: The expression of SNHG3, miR-101, and zinc finger E-box-binding protein 1 (ZEB1) in breast cancer tissues and cells was detected using qRT-PCR. The effects of SNHG3 on cell proliferation and invasion were evaluated using MTT, EdU, and cell invasion assays. The protein levels of Ki-67, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase MMP-2, and MMP-9 were analyzed using western blot analysis. A luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to explore the interaction between SNHG3, ZEB1 and miR-101. A subcellular fractionation assay was used to detect the subcellular location of SNHG3. Xenograft tumor experiments were conducted to verify the role and mechanism of SNHG3 in breast cancer in vivo. Results: SNHG3 expression was upregulated in breast cancer tissues and correlated with poor prognosis. SNHG3 knockdown suppressed breast cancer cell proliferation and invasion, which was further demonstrated by high levels of proliferation marker proteins Ki-67/PCNA and metastasis-related proteins MMP-2/MMP-9. Additionally, SNHG3 was located in the cytoplasm of breast cancer cells. SNHG3 functioned as a molecular sponge for miR-101 in breast cancer cells. miR-101 was downregulated in breast cancer tissues and negatively correlated with SNHG3 expression. Moreover, ZEB1, a target of miR-101, was positively regulated by SNHG3 in breast cancer cells. ZEB1 mRNA expression was upregulated in breast cancer tissues and positively correlated with SNHG3 expression. Mechanistically, SNHG3 knockdown suppressed cell proliferation and invasion by upregulation of miR-101 and downregulation of ZEB1 expression in breast cancer cells in vitro and in vivo. Conclusion: SNHG3 promoted proliferation and invasion by regulating the miR-101/ZEB1 axis in breast cancer. In the present study, we investigated the expression and functional roles of SNHG3 in breast cancer cells, as well as the underlying mechanism of SNHG3 involved in the progression of breast cancer in vitro and in vivo.![]()
Collapse
Affiliation(s)
- Liang Chang
- Department of Thyroid Breast Surgery
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Zhuang Hu
- Department of Thyroid Breast Surgery
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Zhenyu Zhou
- Department of Thyroid Breast Surgery
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Hui Zhang
- Department of Gastroenterology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| |
Collapse
|
45
|
Shi S, Hu X, Xu J, Liu H, Zou L. MiR-320d suppresses the progression of breast cancervialncRNA HNF1A-AS1 regulation and SOX4 inhibition. RSC Adv 2018; 8:19196-19207. [PMID: 35539662 PMCID: PMC9080600 DOI: 10.1039/c8ra01200h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-320d (miR-320d) is a novel cancer-related miRNA and functions as a tumor suppressor in human cancers.
Collapse
Affiliation(s)
- Shuai Shi
- Reproductive Medicine Center of Jinhua People's Hospital
- Biomedical Research Center of Zhejiang Normal University
- Jinhua
- China
| | - Xiaoling Hu
- Department of Reproductive Endocrinology
- Zhejiang University School of Medicine Affiliated Obstetrics and Gynecology Hospital
- Hangzhou
- China
| | - Jianpo Xu
- Life Sciences Institute of Zhejiang University
- Hangzhou
- China
| | - Hong Liu
- Reproductive Medicine Center of Jinhua People's Hospital
- Biomedical Research Center of Zhejiang Normal University
- Jinhua
- China
| | - Libo Zou
- Reproductive Medicine Center of Jinhua People's Hospital
- Biomedical Research Center of Zhejiang Normal University
- Jinhua
- China
| |
Collapse
|
46
|
Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun 2017; 495:1594-1600. [PMID: 29217194 DOI: 10.1016/j.bbrc.2017.12.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/03/2017] [Indexed: 01/10/2023]
Abstract
Long non-coding RNAs (lncRNA) have been demonstrated to act as essential regulators in the development and progression of breast cancer. In our study, we found that long noncoding RNA SNHG15 was highly expressed in breast cancer tissues and cell lines. And the expression of SNHG15 was correlated with TNM stage, lymphnode metastasis and survival in breast cancer patients. SNHG15 knockdown significantly inhibited the proliferation and induced apoptosis in breast cancer cells in vitro and in vivo. Besides, SNHG15 downregulation suppressed cell migration and invasion in MCF-7 and BT-20 cells, and inhibited epithelial-mesenchymal transition (EMT). In mechanism, we found that SNHG15 acted as a competing endogenous RNA to sponge miR-211-3p, which was downregulated in breast cancers and inhibited cell proliferation and migration. Our results showed that there was a negative correlation between SNHG15 and miR-211-3p expression in breast cancer patients. Collectively, we, for the first time, revealed the functions of SNHG15 and miR-211-3p in breast cancer.
Collapse
Affiliation(s)
- Qingli Kong
- Department of Oncology, Affiliated Hospital of Jining Medical College, Jining, 272029, Shangdong province, China
| | - Min Qiu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Jining Medical College, Jining, 272029, Shangdong province, China.
| |
Collapse
|