1
|
Ford TJL, Jeon BT, Lee H, Kim WY. Dendritic spine and synapse pathology in chromatin modifier-associated autism spectrum disorders and intellectual disability. Front Mol Neurosci 2023; 15:1048713. [PMID: 36743289 PMCID: PMC9892461 DOI: 10.3389/fnmol.2022.1048713] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Formation of dendritic spine and synapse is an essential final step of brain wiring to establish functional communication in the developing brain. Recent findings have displayed altered dendritic spine and synapse morphogenesis, plasticity, and related molecular mechanisms in animal models and post-mortem human brains of autism spectrum disorders (ASD) and intellectual disability (ID). Many genes and proteins are shown to be associated with spines and synapse development, and therefore neurodevelopmental disorders. In this review, however, particular attention will be given to chromatin modifiers such as AT-Rich Interactive Domain 1B (ARID1B), KAT8 regulatory non-specific lethal (NSL) complex subunit 1 (KANSL1), and WD Repeat Domain 5 (WDR5) which are among strong susceptibility factors for ASD and ID. Emerging evidence highlights the critical status of these chromatin remodeling molecules in dendritic spine morphogenesis and synaptic functions. Molecular and cellular insights of ARID1B, KANSL1, and WDR5 will integrate into our current knowledge in understanding and interpreting the pathogenesis of ASD and ID. Modulation of their activities or levels may be an option for potential therapeutic treatment strategies for these neurodevelopmental conditions.
Collapse
|
2
|
Thakur S, Cahais V, Turkova T, Zikmund T, Renard C, Stopka T, Korenjak M, Zavadil J. Chromatin Remodeler Smarca5 Is Required for Cancer-Related Processes of Primary Cell Fitness and Immortalization. Cells 2022; 11:808. [PMID: 35269430 PMCID: PMC8909548 DOI: 10.3390/cells11050808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.
Collapse
Affiliation(s)
- Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
- Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.T.)
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Tereza Turkova
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Tomas Zikmund
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum, D-81377 München, Germany; (T.Z.)
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Tomáš Stopka
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| |
Collapse
|
3
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
4
|
Murali R, Selenica P, Brown DN, Cheetham RK, Chandramohan R, Claros NL, Bouvier N, Cheng DT, Soslow RA, Weigelt B, McCluggage WG. Somatic genetic alterations in synchronous and metachronous low-grade serous tumours and high-grade carcinomas of the adnexa. Histopathology 2019; 74:638-650. [PMID: 30565721 PMCID: PMC6626549 DOI: 10.1111/his.13796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
AIMS Low-grade serous carcinomas (LGSCs) and their precursors serous borderline tumours (SBTs) characteristically harbour mutations in BRAF, KRAS or NRAS but rarely in TP53, whereas high-grade serous carcinomas (HGSCs) are characterised by frequent TP53 mutations but rare BRAF, KRAS or NRAS mutations. In a small subset of cases, LGSCs and/or SBTs develop into high-grade tumours, including HGSCs and poorly differentiated carcinomas (PDCs). Here, we sought to define the repertoire of somatic genetic alterations in low-grade serous tumours and synchronous or metachronous high-grade adnexal carcinomas. METHODS AND RESULTS DNA extracted from five SBTs/LGSCs and synchronous or metachronous HGSCs/PDCs and matched normal tissue was subjected to massively parallel sequencing targeting all exons and selected non-coding regions of 341 cancer-related genes. The low-grade and high-grade tumours from a given case were related, and shared mutations and copy number alterations. Progression from low-grade to high-grade lesions was observed, and involved the acquisition of additional mutations and/or copy number alterations, or shifts from subclonal to clonal mutations. Only two (an HGSC and a PDC) of the five high-grade tumours investigated harboured TP53 mutations, whereas NRAS and KRAS hotspot mutations were seen in two HGSCs and one HGSC, respectively. CONCLUSIONS Our results suggest that progression from SBT to HGSC may take place in a subset of cases, and that at least some of the rare HGSCs lacking TP53 mutations may be derived from a low-grade serous precursor.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Cystadenoma, Serous/genetics
- Cystadenoma, Serous/pathology
- Disease Progression
- Female
- Genital Neoplasms, Female/genetics
- Genital Neoplasms, Female/pathology
- Humans
- Middle Aged
- Neoplasm Grading
- Neoplasms, Multiple Primary/pathology
- Neoplasms, Second Primary/pathology
Collapse
Affiliation(s)
- Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N. Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Raghu Chandramohan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nidia L. Claros
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Robert A. Soslow
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|