1
|
Kilci F, Demirsoy U, Jones JH, Çakır Ö, Çizmecioğlu-Jones FM. Ectopic parathyroid hormone as a rare aetiology of hypercalcemia with rhabdomyosarcoma: a new treatment strategy with zoledronic acid and Denosumab. J Pediatr Endocrinol Metab 2022; 35:1107-1112. [PMID: 35534911 DOI: 10.1515/jpem-2022-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Ectopic parathyroid hormone (PTH) secretion is rare in children with rhabdomyosarcoma, and only a few pediatric cases have been reported to date. Reports of the use of zoledronic acid (ZA) and Denosumab are limited for the treatment of hypercalcemia of malignancy (HCM) in the pediatric population. The aim of presenting this pediatric case of rhabdomyosarcoma accompanied by HCM, secondary to ectopic PTH secretion, was to highlight the benefits of ZA as a first-choice bisphosphonate in this situation with Denosumab as an alternative therapy. CASE PRESENTATION The patient was diagnosed at 13 years with alveolar rhabdomyosarcoma. Multiple bone metastases first appeared at 15 years, but he remained normocalcemic until 17 years old when serum calcium was 15.1 mg/dL and PTH 249 pg/mL. While serum calcium responded well after ZA and Denosumab cycles, PTH remained elevated, reaching a peak value of 1851 pg/mL during treatment cycles. CONCLUSIONS We report a patient with rhabdomyosarcoma accompanied by HCM, secondary to ectopic PTH, in whom the HCM was successfully managed with ZA and Denosumab. We believe that ZA should be the bisphosphonate of choice in pediatric HCM with rhabdomyosarcoma, while Denosumab may be another option in ZA-refractory cases.
Collapse
Affiliation(s)
- Fatih Kilci
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Uğur Demirsoy
- Division of Pediatric Oncology, Department of Pediatrics, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Jeremy Huw Jones
- Department of Academic Writing, Kocaeli University, Kocaeli, Turkey
| | - Özgür Çakır
- Department of Radiology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Filiz Mine Çizmecioğlu-Jones
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, Kocaeli University, İzmit, Kocaeli, Turkey
| |
Collapse
|
2
|
Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021; 53:318-327. [PMID: 33707742 PMCID: PMC8080836 DOI: 10.1038/s12276-021-00576-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Wang Z, Wang Z, Li S, Li B, Sun L, Li H, Lin P, Wang S, Teng W, Zhou X, Ye Z. Decitabine Enhances Vγ9Vδ2 T Cell-Mediated Cytotoxic Effects on Osteosarcoma Cells via the NKG2DL-NKG2D Axis. Front Immunol 2018; 9:1239. [PMID: 29910819 DOI: 10.3389/fimmu.2018.01239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023] Open
Abstract
γδ T cell-based immunotherapy for osteosarcoma (OS) has shown limited success thus far. DNA-demethylating agents not only induce tumor cell death but also have an immunomodulatory function. In this study, we have assessed the potential benefit of combining decitabine (DAC, a DNA demethylation drug) and γδ T cells for OS immunotherapy. DAC increased the expression of natural killer group 2D (NKG2D) ligands (NKG2DLs), including major histocompatibility complex class I-related chains B (MICB) and UL16-binding protein 1 (ULBP1), on the OS cell surface, making the cells more sensitive to recognition and destruction by cytotoxic γδ T cells. The upregulation of MICB and ULBP1 was due to promoter DNA demethylation. Importantly, the killing of OS cells by γδ T cells was partially reversed by blocking the NKG2D receptor, suggesting that the γδ T cell-mediated cytolysis of DAC-pretreated OS cells was mainly dependent on the NKG2D-NKG2DL axis. The in vivo results were consistent with the in vitro results. In summary, DAC could upregulate MICB and ULBP1 expression in OS cells, and combination treatment involving γδ T cell immunotherapy and DAC could be used to enhance the cytotoxic killing of OS cells by γδ T cells.
Collapse
Affiliation(s)
- Zhan Wang
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Li
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Binghao Li
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Sun
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hengyuan Li
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lin
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wangsiyuan Teng
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xingzhi Zhou
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|