1
|
Yan J, Zhou Y, Wang Y, Liu Y. PARG Promotes Esophagus Cancer Cell Metastasis by Activation of the Wnt/β-Catenin Pathway. Biochem Genet 2024; 62:761-774. [PMID: 37429965 DOI: 10.1007/s10528-023-10434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Esophagus cancer (EC) is a highly malignant and metastatic cancer. Poly(ADP-ribose) glycohydrolase (PARG), a DNA replication and repair regulator, inhibits cancer cell replication defects. This study aimed to explore the role of PARG in EC. The biological behaviors were analyzed using MTT assay, Transwell assay, scratch test, cell adhesion assay, and western blot. PARG expression was detected using quantitative PCR and immunohistochemical assay. The regulation of the Wnt/β-catenin pathway was assessed using western blot. The results showed that PARG was highly expressed in EC tissues and cells. Knockdown of PARG suppressed cell viability, invasion, migration, adhesion, and epithelial-mesenchymal transition. Conversely, overexpression of PARG promoted the biological behaviors mentioned above. Moreover, overexpression of PARG promoted the activation of the Wnt/β-catenin pathway rather than the STAT and Notch pathways. XAV939, the Wnt/β-catenin pathway inhibitor, partly abolished the biological behaviors mediated by PARG overexpression. In conclusion, PARG promoted the malignant advancement of EC via activating the Wnt/β-catenin pathway. These findings suggested that PARG might be a new therapeutic target for EC.
Collapse
Affiliation(s)
- Jiaxin Yan
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China
| | - Yalan Wang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chengdu City, China
| | - Yang Liu
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China.
| |
Collapse
|
2
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
3
|
|
4
|
Fazary AE, Alfaifi MY, Elbehairi SEI, Amer ME, Nasr MSM, Abuamara TMM, Badr DA, Ju YH, Mohamed AF. Bioactivity Studies of Hesperidin and XAV939. ACS OMEGA 2021; 6:20042-20052. [PMID: 34368589 PMCID: PMC8340382 DOI: 10.1021/acsomega.1c03080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
The present work aimed to evaluate the reactivity of natural bioflavonoid hesperidin (HSP) and synthetically derived XAV939 (XAV) against human hepatocellular carcinoma (HepG2), human breast cancer (MDA-MB231) cancer cell lines, and related molecular and pathological profiles. Data recorded revealed that the cytotoxic potential of the tested products was found to be cell type- and concentration-dependent. The half-maximal inhibitory concentration (IC50) value of the HSP-XAV mixture against MDA-MB231 was significantly decreased in the case of using the HSP-XAV mixture against the HepG2 cell line. Also, there was a significant upregulation of the phosphotumor suppressor protein gene (P53) and proapoptotic genes such as B-cell lymphoma-associated X-protein (Bax, CK, and Caspase-3), while antiapoptotic gene B-cell lymphoma (Bcl-2) was significantly downregulated compared with the untreated cell control. The cell cycle analysis demonstrated that DNA accumulation was detected mainly during the G2/M phase of the cell cycle accompanied with the elevated reactive oxygen species level in the treatment of HepG2 and MDA-MB231 cell lines by the HSP-XAV mixture, more significantly than that in the case of cell control. Finally, our finding suggests that both HSP and XAV939 and their mixture may offer an alternative in human liver and breast cancer therapy.
Collapse
Affiliation(s)
- Ahmed E. Fazary
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
- National
Committee for Pure and Applied Chemistry (NCPAC 2018-2022), Academy of Scientific Research and Technology (ASRT), 110 Al Kasr Al Aini, El-Sayeda Zainab, Cairo Governorate 11334, Egypt
- . Tel.: +2-0106-358-2851
| | - Mohammad Y. Alfaifi
- Department
of Biology, Science Collage, King Khalid
University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department
of Biology, Science Collage, King Khalid
University, Abha 9004, Saudi Arabia
- Cell
Culture Laboratory, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Mohamed E. Amer
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Damietta, P.C. 34511, Egypt
| | - Mohamed S. M. Nasr
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Tamer M. M. Abuamara
- Histology
Department, Faculty of Medicine, Al-Azhar
University, Nasr City, Cairo 11884, Egypt
| | - Doaa A. Badr
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Yi-Hsu Ju
- Graduate
Institute of Applied Science and Technology, Department of Chemical
Engineering, Taiwan Building Technology Center, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Aly F. Mohamed
- The
International Center for Advanced Researches (ICTAR-Egypt), Cairo 307422, Egypt
| |
Collapse
|
5
|
Tang X, Zheng Y, Jiao D, Chen J, Liu X, Xiong S, Chen Q. Anlotinib Inhibits Cell Proliferation, Migration and Invasion via Suppression of c-Met Pathway and Activation of ERK1/2 Pathway in H446 Cells. Anticancer Agents Med Chem 2021; 21:747-755. [PMID: 32682383 DOI: 10.2174/1871520620666200718235748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Small Cell Lung Cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. The purpose of this study was to investigate the effect of anlotinib on SCLC and the potential molecular mechanisms. METHODS Cell viability was assessed by CCK-8 assay to determine the adequate concentration of anlotinib. Then, effects of anlotinib on cell apoptosis, cell cycle distribution, migration and invasion were analyzed by flow cytometry, PI staining, wound healing assay and transwell assay, respectively. The protein expression of c-met and ERK1/2 pathways in H446 cells were assessed by western blot analysis. RESULTS In this study, we found that anlotinib significantly reduced the cell viability of H446 cells, induced G2/M cell cycle arrest and decreased invasion and migration of H446 cells. Futhermore, we also found that anlotinib could suppress c-met signal transduction and activate the ERK1/2 pathway in H446 cells. More importantly, c-met was involved in the effects of anlotinib on migration and invasion in H446 cells. CONCLUSION Taken together, our results demonstrated that anlotinib was a potential anticancer agent that inhibited cell proliferation, migration and invasion via suppression of the c-met pathway and activation of the ERK1/2 pathway in H446 cells.
Collapse
Affiliation(s)
- Xiali Tang
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Demin Jiao
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| | - Xibang Liu
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan Xiong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong 250062, China
| | - Qingyong Chen
- Department of Pulmonary and Critical Care Medicine, The 903rd Hospital of PLA, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Sharma M, Pruitt K. Wnt Pathway: An Integral Hub for Developmental and Oncogenic Signaling Networks. Int J Mol Sci 2020; 21:E8018. [PMID: 33126517 PMCID: PMC7663720 DOI: 10.3390/ijms21218018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.
Collapse
Affiliation(s)
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
7
|
Jin F, Wang H, Li D, Fang C, Li W, Shi Q, Diao Y, Ding Z, Dai X, Tao L, Sunagawa M, Wu F, Qian Y, Liu Y. DJ‑1 promotes cell proliferation and tumor metastasis in esophageal squamous cell carcinoma via the Wnt/β‑catenin signaling pathway. Int J Oncol 2020; 56:1115-1128. [PMID: 32319588 PMCID: PMC7115355 DOI: 10.3892/ijo.2020.5005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
DJ‑1, an oncogene, has been reported to be an independent prognostic indicator of poor survival in patients with esophageal squamous cell carcinoma (ESCC). The aim of the present study was to investigate the role of DJ‑1 in tumor cell proliferation and invasion in ESCC and its underlying mechanisms. It was observed that the expression level of DJ‑1 was upregulated and positively associated with EMT biomarkers in 84 human ESCC tissue specimens. Overexpression and knockdown experiments demonstrated that DJ‑1 was involved in proliferation, migration, invasion and EMT in ECA‑109 cells in vitro and extensive peritoneal seeding in a peritoneal dissemination mice model. Furthermore, the present data revealed that DJ‑1 could activate the Wnt/β‑catenin signaling pathway, which mediates the EMT and metastasis in ESCC. In conclusions, DJ‑1 promoted proliferation, invasion, metastasis and the EMT in ESCC via activation of the Wnt/β‑catenin signal pathway. The present results suggested DJ‑1 could represent a promising therapeutic target for the prevention and treatment of ESCC‑related metastasis.
Collapse
Affiliation(s)
- Feng Jin
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Haibo Wang
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dan Li
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Chuanchi Fang
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Wenyuan Li
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qingtong Shi
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yali Diao
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Zhiyan Ding
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaojun Dai
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Li Tao
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo 142‑8555, Japan
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yayun Qian
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yanqing Liu
- Institution of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
8
|
Yu H, Xu L, Liu Z, Guo B, Han Z, Xin H. Circ_MDM2_000139, Circ_ATF2_001418, Circ_CDC25C_002079, and Circ_BIRC6_001271 Are Involved in the Functions of XAV939 in Non-Small Cell Lung Cancer. Can Respir J 2019; 2019:9107806. [PMID: 31885751 PMCID: PMC6900950 DOI: 10.1155/2019/9107806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 01/26/2023] Open
Abstract
Background The small molecule inhibitor XAV939 could inhibit the proliferation and promote the apoptosis of non-small cell lung cancer (NSCLC) cells. This study was conducted to identify the key circular RNAs (circRNAs) and microRNAs (miRNAs) in XAV939-treated NSCLC cells. Methods After grouping, the NCL-H1299 cells in the treatment group were treated by 10 μM XAV939 for 12 h. RNA-sequencing was performed, and then the differentially expressed circRNAs (DE-circRNAs) were analyzed by the edgeR package. Using the clusterprofiler package, enrichment analysis for the hosting genes of the DE-circRNAs was performed. Using Cytoscape software, the miRNA-circRNA regulatory network was built for the disease-associated miRNAs and the DE-circRNAs. The DE-circRNAs that could translate into proteins were predicted using circBank database and IRESfinder tool. Finally, the transcription factor (TF)-circRNA regulatory network was built by Cytoscape software. In addition, A549 and HCC-827 cell treatment with XAV939 were used to verify the relative expression levels of key DE-circRNAs. Results There were 106 DE-circRNAs (including 61 upregulated circRNAs and 45 downregulated circRNAs) between treatment and control groups. Enrichment analysis for the hosting genes of the DE-circRNAs showed that ATF2 was enriched in the TNF signaling pathway. Disease association analysis indicated that 8 circRNAs (including circ_MDM2_000139, circ_ATF2_001418, circ_CDC25C_002079, and circ_BIRC6_001271) were correlated with NSCLC. In the miRNA-circRNA regulatory network, let-7 family members⟶circ_MDM2_000139, miR-16-5p/miR-134-5p⟶circ_ATF2_001418, miR-133b⟶circ_BIRC6_001271, and miR-221-3p/miR-222-3p⟶circ_CDC25C_002079 regulatory pairs were involved. A total of 47 DE-circRNAs could translate into proteins. Additionally, circ_MDM2_000139 was targeted by the TF POLR2A. The verification test showed that the relative expression levels of circ_MDM2_000139, circ_CDC25C_002079, circ_ATF2_001418, and circ_DICER1_000834 in A549 and HCC-827 cell treatment with XAV939 were downregulated comparing with the control. Conclusions Let-7 family members and POLR2A targeting circ_MDM2_000139, miR-16-5p/miR-134-5p targeting circ_ATF2_001418, miR-133b targeting circ_BIRC6_001271, and miR-221-3p/miR-222-3p targeting circ_CDC25C_002079 might be related to the mechanism in the treatment of NSCLC by XAV939.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Zhifeng Han
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| |
Collapse
|
9
|
Kim D, Koh B, Kim KR, Kim KY, Jung WH, Kim HY, Kim S, Dal Rhee S. Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3-dimensional culture of colorectal cancer cells. Oncol Lett 2019; 18:4858-4864. [PMID: 31611996 PMCID: PMC6781734 DOI: 10.3892/ol.2019.10813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
XAV939, a tankyrase inhibitor, exerts an anticancer effect in 3-dimensional (3D) cultured SW480 cells, however this is not exhibited in 2-dimensional (2D) cultured SW480 cells. In the current study, XAV939 induced a 3.7-fold increase in cellular apoptosis in 3D culture but not in the 2D culture. However, no significant changes were indicated in cell cycle distribution in the 2D or 3D culture. Based on the observation that protein expression, which was associated with the glycolytic pathway, was increased in the 3D culture, the effect of XAV939 on the patterns of glycolytic protein expression was assessed. XAV939 was revealed to decrease lactose dehydrogenase A (LDHA) expression in 3D cultured SW480 cells, but only exerted a small effect in the 2D culture. The coadministration of XAV939 with the LDHA inhibitor FX11 decreased proliferation in 3D cultured SW480 cells compared with the single administration of FX11, while there was no additive effect in the 2D culture. The lactate assay also indicated that XAV939 decreased lactate secretion in the 3D cell culture but not in the 2D culture. These results suggest that XAV939 exerts an anticancer effect through inhibition of LDHA in the 3D culture.
Collapse
Affiliation(s)
- Dahee Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kwang Rok Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Hoon Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hi Youn Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Dal Rhee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
10
|
Jung WH, Elawad K, Kang SH, Chen Y. Cell-Cell Adhesion and Myosin Activity Regulate Cortical Actin Assembly in Mammary Gland Epithelium on Concaved Surface. Cells 2019; 8:cells8080813. [PMID: 31382444 PMCID: PMC6721614 DOI: 10.3390/cells8080813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
It has been demonstrated that geometry can affect cell behaviors. Though curvature-sensitive proteins at the nanoscale are studied, it is unclear how cells sense curvature at the cellular and multicellular levels. To characterize and determine the mechanisms of curvature-dependent cell behaviors, we grow cells on open channels of the 60-µm radius. We found that cortical F-actin is 1.2-fold more enriched in epithelial cells grown on the curved surface compared to the flat control. We observed that myosin activity is required to promote cortical F-actin formation. Furthermore, cell–cell contact was shown to be indispensable for curvature-dependent cortical actin assembly. Our results indicate that the actomyosin network coupled with adherens junctions is involved in curvature-sensing at the multi-cellular level.
Collapse
Affiliation(s)
- Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Khalid Elawad
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Yu H, Han Z, Xu Z, An C, Xu L, Xin H. RNA sequencing uncovers the key long non-coding RNAs and potential molecular mechanism contributing to XAV939-mediated inhibition of non-small cell lung cancer. Oncol Lett 2019; 17:4994-5004. [PMID: 31186710 PMCID: PMC6507402 DOI: 10.3892/ol.2019.10191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to reveal the key long non-coding RNAs (lncRNAs) and the potential molecular mechanisms of XAV939 treatment in non-small cell lung cancer (NSCLC). The NSCLC cell line, NCI-H1299, was cultured with 10 µM XAV939 for 12 h, and NCI-H1299 cells without XAV939 treatment were used as controls. Following RNA isolation from the two groups, RNA-sequencing was performed to detect transcript expression levels, and differentially-expressed lncRNAs (DE-lncRNAs) and DE-genes (DEGs) were identified between groups and analyzed for their functions and associated pathways. The potential associations between proteins encoded by DEGs were revealed via a protein-protein interaction (PPI) network. Subsequently, the microRNA (miRNA/miR)-mRNA, lncRNA-miRNA and lncRNA-mRNA interactions were explored, followed by competing endogenous RNA (ceRNA) network construction. A total of 396 DEGs and 224 DE-lncRNAs were identified between the XAV939 and control groups. These lncRNAs were mainly enriched in pathways such as ‘ferroptosis’ [DEG, solute carrier family 7 member 11 (SLC7A11)]. The PPI network consisted of 97 nodes and 112 interactions. Furthermore, a total of 10 noteworthy lncRNAs were revealed in the DE-lncRNA-DEG interaction. Finally, the lncRNA-miRNA-mRNA regulatory association, including MIR503 host gene (MIR503HG)-miR1273c-SRY-box 4 (SOX4), was explored in the current ceRNA network. The downregulation of lncRNA MIR503HG induced by XAV939 may serve an important role in NSCLC suppression via sponging miR-1273c and regulating SOX4 expression. Furthermore, the downregulation of SLC7A11 induced by XAV939 may also inhibit the development of NSCLC via the ferroptosis pathway.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhifeng Han
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhenan Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chong An
- Department of Thoracic Surgery, The Second Hospital of Jilin City, Jilin 132001, P.R. China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
12
|
Stakheev D, Taborska P, Strizova Z, Podrazil M, Bartunkova J, Smrz D. The WNT/β-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci Rep 2019; 9:4761. [PMID: 30886380 PMCID: PMC6423115 DOI: 10.1038/s41598-019-41182-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
Upregulated Wnt/β-catenin signaling is associated with increased cancer cell resistance and cancer cell-elicited immunosuppression. In non-neoplastic immune cells, upregulated Wnt/β-catenin is, however, associated with either immunosuppression or immunostimulation. Therefore, it is difficult to predict the therapeutic impact inhibitors of Wnt/β-catenin signaling will have when combined with cancer immunotherapy. Here, we evaluated the benefit(s) of the Wnt/β-catenin signaling inhibitor XAV939 in the in vitro elimination of LNCaP prostate cancer cells when cocultured with lymphocytes from patients with localized biochemically recurrent prostate cancer (BRPCa). We found that 5 µM XAV939 inhibited β-catenin translocation to the nucleus in LNCaP cells and CD4+ BRPCa lymphocytes without affecting their proliferation and viability. Preconditioning BRPCa lymphocytes with 5 µM XAV939 accelerated the elimination of LNCaP cells during the coculturing. However, during subsequent re-coculturing with fresh LNCaP cells, BRPCa lymphocytes were no longer able to eliminate LNCaP cells unless coculturing and re-coculturing were performed in the presence of 5 µM XAV939. Comparable results were obtained for PC-3 prostate cancer cells. These findings provide a rationale for combining cell-based immunotherapy of PCa with inhibitors of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Dmitry Stakheev
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Pavla Taborska
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Strizova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Michal Podrazil
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jirina Bartunkova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Daniel Smrz
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
13
|
Li C, Wang Z, Chen S, Zhang J, Qu K, Liu C. MicroRNA-552 promotes hepatocellular carcinoma progression by downregulating WIF1. Int J Mol Med 2018; 42:3309-3317. [PMID: 30221686 PMCID: PMC6202085 DOI: 10.3892/ijmm.2018.3882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are involved in the metastasis of hepatocellular carcinoma (HCC). In the present study, it was demonstrated that miR-552 was upregulated in HCC tissues. High miR-552 expression was associated with malignant clinicopathological features and decreased survival rates. The in vitro results indicated that miR-552 overexpression promoted migration, invasion and epithelial-mesenchymal transition in Hep3B cells. However, the knockdown of miR-552 inhibited its oncogenic roles in Huh-7 cells. Additionally, Wnt inhibitory factor 1 (WIF1) was demonstrated to be a direct target of miR-552 in Hep3B and Huh-7 cells. Additional experiments identified that miR-552 promotes β-catenin expression by increasing the phosphorylation of GSK3β at Ser9. In conclusion, the results suggested that miR-552 may promote HCC progression by blocking WIF1-mediated GSK3β dephosphorylation. miR-552 may be a biomarker for predicting the outcomes of patients with HCC.
Collapse
Affiliation(s)
- Chao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuangjiang Chen
- Department of General Surgery, Ankang People's Hospital, Ankang, Shaanxi 725000, P.R. China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|