1
|
Han D, Guo C, Cheng H, Lu J, Hou Z, Zhang X, Luo Y, Zhang B, Zhao W, Shang P. Downregulation of S100A11 promotes T cell infiltration by regulating cancer-associated fibroblasts in prostate cancer. Int Immunopharmacol 2024; 128:111323. [PMID: 38286714 DOI: 10.1016/j.intimp.2023.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVE This study aims at revealing the relationship between S100A11 and cancer-associated fibroblasts (CAFs) in prostate cancer and improving T cell infiltration into solid tumors. METHODS H&E, IHC and Sirius red staining were used to detect the stroma content in prostate cancer tissues. Stable S100A11 knockdown cell lines DU 145, 22Rv1, RM-1 and NOR-10 were established by lentivirus transfection. Co-culture system of RM-1 and CAFs was established. CCK-8, wound healing and transwell were proceeded to determine proliferation, migration and invasion of prostate cancer cells. Stably knocked-down RM-1 and CAFs were co-injected into C57BL/6 mice to detect the role of S100A11 in vivo. CAFs, CD4+ T cell and CD8+ T cell in these tumors were assessed by IF. T cell profile was analyzed by flow cytometry. RESULTS A significant amount of stroma exists in prostate cancer tissues. Downregulation of S100A11 inhibits proliferation, migration and invasion of human prostate cancer cells in vitro, and suppresses the expression of cancer-associated fibroblasts (CAFs) in vivo. Knockdown of S100A11 enhances the inhibitory effect of Erdafitinib on CAFs in both the co-culture system and in vivo. The combined knockdown of S100A11 in tumor cells and CAFs shows a superior therapeutic effect compared to the individual knockdown in tumor cells alone. Knockdown of S100A11, both in RM-1 and CAFs, combined with Erdafitinib treatment reduces tumorigenicity by suppressing the content of CAFs and increasing the infiltration of CD4+ T cell and effective CD8+ T cell in tumor. CONCLUSION Downregulation of S100A11 plays a crucial role in enhancing the therapeutic response to Erdafitinib and reversing immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Dali Han
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chenhao Guo
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hui Cheng
- Department of Pathology, The Second People's Hospital of Gansu Province, Lanzhou, Gansu Province, China
| | - Jianzhong Lu
- Key Laboratory of Gansu Province for Urological Diseases, Lanzhou, Gansu Province, China
| | - Zizhen Hou
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xingxing Zhang
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yao Luo
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China
| | - Bin Zhang
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China
| | - Wenli Zhao
- Lanzhou University, Lanzhou, Gansu Province, China
| | - Panfeng Shang
- Department of Urology, Lanzhou University Second Hospital, Laboratory of Gansu Province for Urological Diseases, Gansu Nephro-Urological Clinical Center, Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
2
|
Zheng M, Meng H, Li Y, Shi J, Han Y, Zhao C, Chen J, Han J, Liang J, Chen Y, Liu Q, Wang Y. S100A11 Promotes Metastasis via AKT and ERK Signaling Pathways and Has a Diagnostic Role in Hepatocellular Carcinoma. Int J Med Sci 2023; 20:318-328. [PMID: 36860671 PMCID: PMC9969497 DOI: 10.7150/ijms.80503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and malignant liver tumor worldwide, although the treatment approaches for HCC continue to evolve, metastasis is the main reason for high mortality rates. S100 calcium-binding protein A11 (S100A11), an important member of the S100 family of small calcium-binding proteins, is overexpressed in various cells and regulates tumor development and metastasis. However, few studies report the role and underlying regulatory mechanisms of S100A11 in HCC development and metastasis. Herein, we discovered that S100A11 is overexpressed and associated with poor clinical outcomes in HCC cohorts, and we provided the first demonstration that S100A11 could serve as a novel diagnostic biomarker used in conjunction with AFP for HCC. Further analysis implied that S100A11 outperforms AFP in determining whether HCC patients have hematogenous metastasis or not. Using in vitro cell culture model, we demonstrated that S100A11 is overexpressed in metastatic hepatoma cells, knockdown of S100A11 decreases hepatoma cells proliferation, migration, invasion, and epithelial-mesenchymal transition process by inhibiting AKT and ERK signaling pathways. Altogether, our study provides new sights into the biological function and mechanisms underlying S100A11 in promoting metastasis of HCC and explores a novel target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yunhui Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jingren Shi
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Ying Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Changxu Zhao
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850, China
| | - Jin Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jinyu Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jing Liang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yuan Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiqi Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| |
Collapse
|
3
|
Li X, Qiu N, Li Q. Prognostic Values and Clinical Significance of S100 Family Member's Individualized mRNA Expression in Pancreatic Adenocarcinoma. Front Genet 2021; 12:758725. [PMID: 34804125 PMCID: PMC8595214 DOI: 10.3389/fgene.2021.758725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: Pancreatic adenocarcinoma (PAAD) is a common malignant tumor worldwide. S100 family (S100s) is wildly involved in regulating the occurrence, development, invasion, metastasis, apoptosis, and drug resistance of many malignant tumors. However, the expression pattern, prognostic value, and oncological role of individual S100s members in PAAD need to be elucidated. Methods: The transcriptional expression levels of S100s were analyzed through the Oncomine and GEPIA, respectively. The protein levels of S100s members in PAAD were studied by Human Protein Atlas. The correlation between S100 mRNA expression and overall survival and tumor stage in PAAD patients was studied by GEPIA. The transcriptional expression correlation and gene mutation rate of S100s members in PAAD patients were explored by cBioPortal. The co-expression networks of S100s are identified using STRING and Gene MANIA to predict their potential functions. The correlation of S100s expression and tumor-infiltrating immune cells was tested by TIMER. Pathway activity and drug target analyzed by GSCALite. Results: 13 S100s members were upregulated in PAAD tissues. 15 S100s members were associated with TP53 mutation. Expression levels of S100A3/A5/A6/A10/A11/A14/A16/B/P/Z were significantly correlated with the pathological stage. Prognosis analysis demonstrated that PAAD patients with low mRNA levels of S100A1/B/Z or high levels of S100A2/A3/A5/A10/A11/A14/A16 had a poor prognosis. Immuno-infiltration analysis showed that the mRNA levels of S100A10/A11/A14/A16 were correlated with the infiltration degree of macrophages in PAAD. Drug sensitivity analysis showed that PAAD expressing high levels of S100A2/A6/A10/A11/A13/A14/A16 maybe resistant to small molecule drugs. Conclusion: This study identifies the clinical significance and biological functions of the S100s in PAAD, which may provide novel insights for the selection of prognostic biomarkers.
Collapse
Affiliation(s)
- Xiaomin Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Qiu
- Key Laboratory of Ocean and Marginal Sea Geology, Guangdong Southern Marine Science & Engineering Laboratory (Guangzhou), South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Qijuan Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
4
|
Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations. Cells 2021; 10:cells10113126. [PMID: 34831349 PMCID: PMC8623328 DOI: 10.3390/cells10113126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.
Collapse
|
5
|
Hu W, Li M, Wu J, Chen H, Zhao T, Zhang C, Wang Z. Inhibition of Dishevelled-2 suppresses the biological behavior of pancreatic cancer by downregulating Wnt/β-catenin signaling. Oncol Lett 2021; 22:769. [PMID: 34589148 PMCID: PMC8442142 DOI: 10.3892/ol.2021.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
Dishevelled-2 (DVL2) has been proven to be involved in the tumorigenesis of several human cancers, such as colorectal cancer, lung cancer, prostate cancer, etc. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. The present study investigated the effects of aberrantly expressed DVL2 on PDAC. A total of 97 pancreatic cancer (PC) samples and 85 adjacent normal samples were obtained from patients who were histopathologically diagnosed with primary PDAC. The present study demonstrated that DVL2 expression was upregulated in PDAC tissues and was positively associated with advanced clinical stage and lymph node metastasis in patients with PDAC. In addition, patients with high expression of DVL2 had a shorter overall survival rate compared with those with low expression. To elucidate the role of DVL2 in PDAC, lentivirus-mediated short hairpin RNA was used to silence DVL2 and its physiological function was analyzed in CFPAC-1 and PANC-1 cells. The results indicated that DVL2 downregulation significantly impaired its oncogenic functions including cell proliferation, migration, invasion and epithelial-mesenchymal transition. Furthermore, DVL2 knockdown inhibits the proliferation and invasion of PC cells in vivo. In addition, co-immunoprecipitation assays revealed that DVL2 interacted with β-catenin; knockdown of DVL2 reduced the expression level of β-catenin and inhibited β-catenin translocation into the nucleus. In conclusion the findings of the present study suggested that DVL2 may be a potential therapeutic target in the treatment of PDAC.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Mingxu Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Junyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Ting Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| | - Chunjie Zhang
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222001, P.R. China.,Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222001, P.R. China
| |
Collapse
|
6
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Zhang L, Zhu T, Miao H, Liang B. The Calcium Binding Protein S100A11 and Its Roles in Diseases. Front Cell Dev Biol 2021; 9:693262. [PMID: 34179021 PMCID: PMC8226020 DOI: 10.3389/fcell.2021.693262] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
The calcium binding protein S100 family in humans contains 21 known members, with each possessing a molecular weight between 10 and 14 kDa. These proteins are characterized by a unique helix-loop-helix EF hand motif, and often form dimers and multimers. The S100 family mainly exists in vertebrates and exerts its biological functions both inside cells as a calcium sensor/binding protein, as well as outside cells. S100A11, a member of the S100 family, may mediate signal transduction in response to internal or external stimuli and it plays various roles in different diseases such as cancers, metabolic disease, neurological diseases, and vascular calcification. In addition, it can function as chemotactic agent in inflammatory disease. In this review, we first detail the discovery of S100 proteins and their structural features, and then specifically focus on the tissue and organ expression of S100A11. We also summarize its biological activities and roles in different disease and signaling pathways, providing an overview of S100A11 research thus far.
Collapse
Affiliation(s)
- Linqiang Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of General Surgery, Dongguan Liaobu Hospital, Dongguan, China
| | - Bin Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Belkacemi L, Zhong W, Darmani NA. Signal transduction pathways involved in dopamine D 2 receptor-evoked emesis in the least shrew (Cryptotis parva). Auton Neurosci 2021; 233:102807. [PMID: 33865060 DOI: 10.1016/j.autneu.2021.102807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
With its five receptor subtypes (D1-5), dopamine is implicated in a myriad of neurological illnesses. Dopamine D2 receptor-based agonist therapy evokes nausea and vomiting. The signaling mechanisms by which dopamine D2 receptors evoke vomiting remains unknown. Phosphatidylinositol 3-kinases (PI3K)- and protein kinase C (PKC)-related signaling cascades stimulate vomiting post-injection of various emetogens in emetically competent animals. This study investigated potential mechanisms involved in dopamine D2 receptor-mediated vomiting using least shrews. We found that vomiting evoked by the selective dopamine D2 receptor agonist quinpirole (2 mg/kg, i.p.) was significantly suppressed by: i) a dopamine D2 preferring antagonist, sulpiride (s.c.); ii) a selective PI3K inhibitor, LY294002 (i.p.); iii) a PKCαβII inhibitor, GF109203X (i.p.); and iv) a selective inhibitor of extracellular signal-regulated protein kinase1/2 (ERK1/2), U0126 (i.p.). Quinpirole-evoked c-fos immunofluorescence in the nucleus tractus solitarius (NTS) was suppressed by pretreatment with sulpiride (8 mg/kg, s.c.). Western blot analysis of shrew brainstem emetic loci protein lysates revealed a significant and time-dependent increase in phosphorylation of Akt (protein kinase B (PKB)) at Ser473 following a 30-min exposure to quinpirole (2 mg/kg, i.p.). Pretreatment with effective antiemetic doses of sulpiride, LY294002, GF109203X, or U0126 significantly reduced quinpirole-stimulated phosphorylation of emesis-associated proteins including p-85PI3K, mTOR (Ser2448/2481), PKCαβII (Thr638/641), ERK1/2 (Thr202/204), and Akt (Ser473). Our results substantiate the implication of PI3K/mTOR/Akt and PI3K/PKCαβII/ERK1/2/Akt signaling pathways in dopamine D2 receptor-mediated vomiting. Potential novel antiemetics targeting emetic proteins associated with these signaling cascades may offer enhanced potency and/or efficacy against emesis.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
9
|
Zhuang H, Chen X, Dong F, Zhang Z, Zhou Z, Ma Z, Huang S, Chen B, Zhang C, Hou B. Prognostic values and immune suppression of the S100A family in pancreatic cancer. J Cell Mol Med 2021; 25:3006-3018. [PMID: 33580614 PMCID: PMC7957204 DOI: 10.1111/jcmm.16343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
S100 calcium‐binding protein A (S100A) family members regulate multiple biological functions related to pancreatic cancer (PC) progression and metastasis. However, the prognostic and oncologic values of S100A family have not been systematically investigated in PC. In the present study, the mRNA expression and potential functions of S100A family were investigated by bioinformatic analysis. Our results demonstrated that overexpression of S100A2, S100A6, S100A10, S100A11, S100A14 and S100A16 was significantly associated with higher T stage, advanced histologic grade and worse prognosis in PC. Besides, one CpG of S100A2, three CpG of S100A6, four CpG of S100A10, four CpG of S100A11, two CpG of S100A14 and five CpG of S100A16 were negatively associated with corresponding S100A family members expression and positively associated with overall survival (OS). The signature based on four CpGs showed good prediction ability of OS. Besides, S100A2 overexpression took part in the regulation of mitotic cell cycle, ECM‐receptor interaction and HIF‐1α transcription factor network. Overexpression of S100A6, S100A10, S100A11, S100A14 and S100A16 may impair the infiltration and cytolytic activity of CD8+ T cells through focal adhesion‐Ras‐stimulating signalling pathway in PC. Overall, this study explores the multiple prognostic values and oncologic functions of the S100A family in PC.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Xinming Chen
- Department of Hepatobiliary Surgery, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Fengying Dong
- Forth Department of Geriatrics, General Hospital of Southern Theater Command, Pla, Guangzhou, China
| | - Zedan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Peterova E, Bures J, Moravkova P, Kohoutova D. Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study. Molecules 2021; 26:molecules26020402. [PMID: 33466593 PMCID: PMC7828666 DOI: 10.3390/molecules26020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
S100 proteins are involved in the pathogenesis of sporadic colorectal carcinoma through different mechanisms. The aim of our study was to assess tissue mRNA encoding S100 proteins in patients with non-advanced and advanced colorectal adenoma. Mucosal biopsies were taken from the caecum, transverse colon and rectum during diagnostic and/or therapeutic colonoscopy. Another biopsy was obtained from adenomatous tissue in the advanced adenoma group. The tissue mRNA for each S100 protein (S100A4, S100A6, S100A8, S100A9, S100A11 and S100P) was investigated. Eighteen biopsies were obtained from the healthy mucosa in controls and the non-advanced adenoma group (six individuals in each group) and thirty biopsies in the advanced adenoma group (ten patients). Nine biopsies were obtained from advanced adenoma tissue (9/10 patients). Significant differences in mRNA investigated in the healthy mucosa were identified between (1) controls and the advanced adenoma group for S100A6 (p = 0.012), (2) controls and the non-advanced adenoma group for S100A8 (p = 0.033) and (3) controls and the advanced adenoma group for S100A11 (p = 0.005). In the advanced adenoma group, differences between the healthy mucosa and adenomatous tissue were found in S100A6 (p = 0.002), S100A8 (p = 0.002), S100A9 (p = 0.021) and S100A11 (p = 0.029). Abnormal mRNA expression for different S100 proteins was identified in the pathological adenomatous tissue as well as in the morphologically normal large intestinal mucosa.
Collapse
Affiliation(s)
- Eva Peterova
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Simkova 870, 500 01 Hradec Kralove, Czech Republic
| | - Jan Bures
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
- Correspondence: ; Tel.: +420-495-834-240
| | - Paula Moravkova
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
| | - Darina Kohoutova
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (E.P.); (P.M.); (D.K.)
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, Chelsea, London SW3 6JJ, UK
| |
Collapse
|
11
|
He X, Sun X, Shao Y. Network-based survival analysis to discover target genes for developing cancer immunotherapies and predicting patient survival. J Appl Stat 2021; 48:1352-1373. [PMID: 35444359 DOI: 10.1080/02664763.2020.1812543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, cancer immunotherapies have been life-savers, however, only a fraction of treated patients have durable responses. Consequently, statistical methods that enable the discovery of target genes for developing new treatments and predicting patient survival are of importance. This paper introduced a network-based survival analysis method and applied it to identify candidate genes as possible targets for developing new treatments. RNA-seq data from a mouse study was used to select differentially expressed genes, which were then translated to those in humans. We constructed a gene network and identified gene clusters using a training set of 310 human gliomas. Then we conducted gene set enrichment analysis to select the gene clusters with significant biological function. A penalized Cox model was built to identify a small set of candidate genes to predict survival. An independent set of 690 human glioma samples was used to evaluate predictive accuracy of the survival model. The areas under time-dependent ROC curves in both the training and validation sets are more than 90%, indicating strong association between selected genes and patient survival. Consequently, potential biomedical interventions targeting these genes might be able to alter their expressions and prolong patient survival.
Collapse
|
12
|
Modulated Electro-Hyperthermia Resolves Radioresistance of Panc1 Pancreas Adenocarcinoma and Promotes DNA Damage and Apoptosis In Vitro. Int J Mol Sci 2020; 21:ijms21145100. [PMID: 32707717 PMCID: PMC7404126 DOI: 10.3390/ijms21145100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
The poor outcome of pancreas ductal adenocarcinomas (PDAC) is frequently linked to therapy resistance. Modulated electro-hyperthermia (mEHT) generated by 13.56 MHz capacitive radiofrequency can induce direct tumor damage and promote chemo- and radiotherapy. Here, we tested the effect of mEHT either alone or in combination with radiotherapy using an in vivo model of Panc1, a KRAS and TP53 mutant, radioresistant PDAC cell line. A single mEHT shot of 60 min induced ~50% loss of viable cells and morphological signs of apoptosis including chromatin condensation, nuclear shrinkage and apoptotic bodies. Most mEHT treatment related effects exceeded those of radiotherapy, and these were further amplified after combining the two modalities. Treatment related apoptosis was confirmed by a significantly elevated number of annexin V single-positive and cleaved/activated caspase-3 positive tumor cells, as well as sub-G1-phase tumor cell fractions. mEHT and mEHT+radioterapy caused the moderate accumulation of γH2AX positive nuclear foci, indicating DNA double-strand breaks and upregulation of the cyclin dependent kinase inhibitor p21waf1 besides the downregulation of Akt signaling. A clonogenic assay revealed that both mono- and combined treatments affected the tumor progenitor/stem cell populations too. In conclusion, mEHT treatment can contribute to tumor growth inhibition and apoptosis induction and resolve radioresistance of Panc1 PDAC cells.
Collapse
|
13
|
Meng M, Sang L, Wang X. S100 Calcium Binding Protein A11 (S100A11) Promotes The Proliferation, Migration And Invasion Of Cervical Cancer Cells, And Activates Wnt/β-Catenin Signaling. Onco Targets Ther 2019; 12:8675-8685. [PMID: 31695426 PMCID: PMC6815786 DOI: 10.2147/ott.s225248] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose This study is aimed to investigate the specific regulatory role of S100 calcium binding protein A11 (S100A11) on cervical cancer (CC), and reveal the potential mechanisms relating to Wnt/β-catenin signaling. Patients and methods The expression of S100A11 in cervical squamous cell carcinoma (CSCC), adjacent non-cancerous, cervical intraepithelial neoplasia (CIN), and normal cervical tissues was detected by quantitative real-time PCR and/or immunohistochemistry. After transfection of pENTER-S100A11 or sh-S100A11-1/sh-S100A11-2, the viability, cell cycle, migration and invasion of C33A or SiHa cells were detected. The tumor volume and tumor weight were measured after injection of transfected C33A cells into mice. The expression of E-caherin (CDH2), N-caherin (CDH1), β-catenin (CTNNB1), and c-Myc (MYC) in C33A and SiHa cells was detected by Western blot. Results The expression of S100A11 was significantly higher in CSCC tissues than in adjacent non-cancerous, CIN, and normal cervical tissues (P < 0.05). S100A11 expression was positively correlated with the FIGO stage and lymph node metastasis of CSCC patients (P < 0.05). The transfection of pENTER-S100A11 into C33A cells significantly increased the cell viability, the percentage of cells in G2/M phase, the numbers of migratory and invasive cells, as well as the tumor volume and weight in mice (P < 0.05). Overexpression of S100A11 also significantly downregulated E-caherin, and upregulated N-caherin, β-catenin, and c-Myc in C33A cells (P < 0.05). The transfection of sh-S100A11-1/sh-S100A11-2 exhibited the opposite results to that of pENTER-S100A11 on SiHa cells. Conclusion Overexpression of S100A11 promotes the proliferation, migration, invasion, and epithelial-mesenchymal transition of CC cells, and activates Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Man Meng
- Department of Oncology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei City, Anhui Province, 230000, People's Republic of China
| | - Lin Sang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Hefei City Affiliated to Anhui Medical University, Hefei City, Anhui Province, 230000, People's Republic of China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, People's Republic of China
| |
Collapse
|
14
|
Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G, Zhao P, Chao H, Li C, Zeng A, Pan M, Ji J. S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-κB positive feedback loop. J Cell Mol Med 2019; 23:6907-6918. [PMID: 31430050 PMCID: PMC6787445 DOI: 10.1111/jcmm.14574] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most universal type of primary brain malignant tumour, and the prognosis of patients with GBM is poor. S100A11 plays an essential role in tumour. However, the role and molecular mechanism of S100A11 in GBM are not clear. Here, we found that S100A11 was up‐regulated in GBM tissues and higher S100A11 expression indicated poor prognosis of GBM patients. Overexpression of S100A11 promoted GBM cell growth, epithelial‐mesenchymal transition (EMT), migration, invasion and generation of glioma stem cells (GSCs), whereas its knockdown inhibited these activities. More importantly, S100A11 interacted with ANXA2 and regulated NF‐κB signalling pathway through decreasing ubiquitination and degradation of ANXA2. Additionally, NF‐κB regulated S100A11 at transcriptional level as a positive feedback. We also demonstrated the S100A11 on tumour growth in GBM using an orthotopic tumour xenografting. These data demonstrate that S100A11/ANXA2/NF‐κB positive feedback loop in GBM cells that promote the progression of GBM.
Collapse
Affiliation(s)
- Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiaoliu Du
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangchi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Minhong Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Wang C, Lin C, Tao Q, Zhao S, Liu H, Li L. Evaluation of calcium-binding protein A11 promotes the carcinogenesis of hypopharygeal squamous cell carcinoma via the PI3K/AKT signaling pathway. Am J Transl Res 2019; 11:3472-3480. [PMID: 31312359 PMCID: PMC6614622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/23/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND The S100 gene family encodes low molecular weight proteins implicated in cancer progression. In the present study, we explored the effects and underlying mechanisms of calcium-binding protein A11 (S100A11 protein) in hypopharyngeal squamous cell carcinoma (HSCC). METHODS RT-qPCR and western blot analysis were used to detect the mRNA and protein expression of S100A11, EGFR, MMP2, CD44, and MMP9. CCK-8, colony formation, wound healing and transwell invasion assays were performed to evaluate the effects of S100A11 on HSCC cells. RESULTS In our study, we observed that the level of S100A11 expression was significantly upregulated in HSCC tissues and cell lines. S100A11 inhibition increased the effects of 5-Fu on FaDu cells proliferation in vitro. In addition, S100A11 inhibition decreased the migration ability of FaDu cells. Additionally, the expression of migration-related proteins including EGFR, MMP2, CD44, and MMP9 were down-regulated when S100A11 was knocked down. Moreover, the expression of phosphorylated-PI3K (p-PI3K), phosphorylated-Akt (p-Akt), phosphorylated-mTOR (p-mTOR) and BCL-2 in FaDu cells were dramatically decreased. CONCLUSIONS Our results suggested that S100A11 could activate the PI3K/Akt/mTOR signaling pathway in HSCC tumorigenesis.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Chen Lin
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Qilei Tao
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Shuwei Zhao
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Huanhai Liu
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| | - Li Li
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University Shanghai 200003, China
| |
Collapse
|
16
|
Apasu JE, Schuette D, LaRanger R, Steinle JA, Nguyen LD, Grosshans HK, Zhang M, Cai WL, Yan Q, Robert ME, Mak M, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo. FASEB J 2018; 33:4802-4813. [PMID: 30592625 DOI: 10.1096/fj.201802004r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increased levels of the calcium-binding protein neuronal calcium sensor 1 (NCS1) predict an unfavorable patient outcome in several aggressive cancers, including breast and liver tumors. Previous studies suggest that NCS1 overexpression facilitates metastatic spread of these cancers. To investigate this hypothesis, we explored the effects of NCS1 overexpression on cell proliferation, survival, and migration patterns in vitro in 2- and 3-dimensional (2/3-D). Furthermore, we translated our results into an in vivo mouse xenograft model. Cell-based proliferation assays were used to demonstrate the effects of overexpression of NCS1 on growth rates. In vitro colony formation and wound healing experiments were performed and 3-D migration dynamics were studied using collagen gels. Nude mice were injected with breast cancer cells to monitor NCS1-dependent metastasis formation over time. We observed that increased NCS1 levels do not change cellular growth rates, but do significantly increase 2- and 3-D migration dynamics in vitro. Likewise, NCS1-overexpressing cells have an increased capacity to form distant metastases and demonstrate better survival and less necrosis in vivo. We found that NCS1 preferentially localizes to the leading edge of cells and overexpression increases the motility of cancer cells. Furthermore, this phenotype is correlated with an increased number of metastases in a xenograft model. These results lay the foundation for exploring the relevance of an NCS1-mediated pathway as a metastatic biomarker and as a target for pharmacologic interventions.-Apasu, J. E., Schuette, D., LaRanger, R., Steinle, J. A., Nguyen, L. D., Grosshans, H. K., Zhang, M., Cai, W. L., Yan, Q., Robert, M. E., Mak, M., Ehrlich, B. E. Neuronal calcium sensor 1 (NCS1) promotes motility and metastatic spread of breast cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan E Apasu
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Daniel Schuette
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Ryan LaRanger
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA; and
| | - Julia A Steinle
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | | | - Meiling Zhang
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Wesley L Cai
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA; and
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Xiao MB, Jin DD, Jiao YJ, Ni WK, Liu JX, Qu LS, Lu CH, Ni RZ, Jiang F, Chen WC. β2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway. Mol Biol Rep 2018; 45:1863-1871. [PMID: 30306507 DOI: 10.1007/s11033-018-4332-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
Psychological stress has been recognized as a well-documented risk factor associated with β2-adrenergic receptor (β2-AR) in the development of pancreatic cancer. Aldo-keto reductase 1 member B1 (AKR1B1) is a potential interacting partner of β2-AR, but the effect of their interaction on pancreatic cancer cells is not known at present. We found a positive correlation between AKR1B1 and β2-AR expression in pancreatic cancer tissue samples, and co-localization of these proteins in the human pancreatic cancer BXPC-3 cell line. Compared to the controls, the CFPAC-1 and PANC-1 pancreatic cancer cells overexpressing β2-AR and AKR1B1 respectively showed significantly higher proliferation rates, which is attributed to higher proportion of cells in the S phase and decreased percentage of early apoptotic cells. Furthermore, overexpression of β2-AR led to a significant increase in the expression of AKR1B1 and phosphorylated extracellular signal-regulated kinase (p-ERK1/2). Overexpression of AKR1B1 significantly decreased β2-AR levels and increased that of p-ERK1/2. Taken together, β2-AR directly interacted with and up-regulated AKR1B1 in pancreatic cancer cells, and promoted their proliferation and inhibited apoptosis via the ERK1/2 pathway. Our findings also highlight the β2-AR-AKR1B1 axis as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Bing Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dan-Dan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Clinical Medicine, Medical College, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Yu-Jie Jiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Clinical Medicine, Medical College, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Wen-Kai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jin-Xia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Li-Shuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Run-Zhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Wei-Chang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK 1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochem Int 2018; 122:106-119. [PMID: 30453005 DOI: 10.1016/j.neuint.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
To characterize mechanisms involved in neurokinin type 1 receptor (NK1R)-mediated emesis, we investigated the brainstem emetic signaling pathways following treating least shrews with the selective NK1R agonist GR73632. In addition to episodes of vomiting over a 30-min observation period, a significant increase in substance P-immunoreactivity in the emetic brainstem dorsal motor nucleus of the vagus (DMNX) occurred at 15 min post an intraperitoneal (i.p.) injection GR73632 (5 mg/kg). In addition, time-dependent upregulation of phosphorylation of several emesis -associated protein kinases occurred in the brainstem. In fact, Western blots demonstrated significant phosphorylations of Ca2+/calmodulin kinase IIα (CaMKIIα), extracellular signal-regulated protein kinase1/2 (ERK1/2), protein kinase B (Akt) as well as α and βII isoforms of protein kinase C (PKCα/βII). Moreover, enhanced phospho-ERK1/2 immunoreactivity was also observed in both brainstem slices containing the dorsal vagal complex emetic nuclei as well as in jejunal sections from the shrew small intestine. Furthermore, our behavioral findings demonstrated that the following agents suppressed vomiting evoked by GR73632 in a dose-dependent manner: i) the NK1R antagonist netupitant (i.p.); ii) the L-type Ca2+ channel (LTCC) antagonist nifedipine (subcutaneous, s.c.); iii) the inositol trisphosphate receptor (IP3R) antagonist 2-APB (i.p.); iv) store-operated Ca2+ entry inhibitors YM-58483 and MRS-1845, (i.p.); v) the ERK1/2 pathway inhibitor U0126 (i.p.); vi) the PKC inhibitor GF109203X (i.p.); and vii) the inhibitor of phosphatidylinositol 3-kinase (PI3K)-Akt pathway LY294002 (i.p.). Moreover, NK1R, LTCC, and IP3R are required for GR73632-evoked CaMKIIα, ERK1/2, Akt and PKCα/βII phosphorylation. In addition, evoked ERK1/2 phosphorylation was sensitive to inhibitors of PKC and PI3K. These findings indicate that the LTCC/IP3R-dependent PI3K/PKCα/βII-ERK1/2 signaling pathways are involved in NK1R-mediated vomiting.
Collapse
|
19
|
Correlation between S100A11 and the TGF-β 1/SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1. Mol Cell Biochem 2018; 450:53-64. [PMID: 29922945 DOI: 10.1007/s11010-018-3372-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-β1/SMAD4/p21 pathway. S100A11 and TGF-β1 protein expressions in 30 paraffin-embedded specimens were evaluated by immunohistochemistry. S100A11 and TGF-β1 expression in PANC-1 cell line was suppressed using small interfering RNA (siRNA), respectively. Subsequently, pancreatic cancer cell apoptosis was measured by Cell Counting Kit-8 and flow cytometry, and S100A11 and TGF-β1/SMAD4/p21 pathway proteins and genes were detected with Western blotting and quantitative polymerase chain reaction (qPCR). S100A11 cytoplasmic/nuclear protein translocation was examined using NE-PER® cytoplasm/nuclear protein extraction in cells interfered with TGF-β1 siRNA. Our results showed that S100A11 expression was positively correlated with TGF-β1 expression in pancreatic cancerous tissue. Silencing TGF-β1 down-regulated intracellular P21WAF1 expression by 90%, blocked S100A11 from cytoplasm entering nucleus, and enhanced cell proliferation. Silencing S100A11 down-regulated intracellular P21 expression and promoted cell apoptosis without significantly changing TGF-β1 and SMAD4 expression. Our findings revealed that S100A11 and TGF-β1/SMAD4 signaling pathway were related but mutually independent in regulating PANC-1 cells proliferation and apoptosis. Other independent mechanisms might be involved in S100A11's regulation of pancreatic cell growth. S100A11 could be a potential gene therapy target for pancreatic cancer.
Collapse
|