1
|
Yokoi A, Yoshida K, Koga H, Kitagawa M, Nagao Y, Iida M, Kawaguchi S, Zhang M, Nakayama J, Yamamoto Y, Baba Y, Kajiyama H, Yasui T. Spatial exosome analysis using cellulose nanofiber sheets reveals the location heterogeneity of extracellular vesicles. Nat Commun 2023; 14:6915. [PMID: 37938557 PMCID: PMC10632339 DOI: 10.1038/s41467-023-42593-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are recognized as promising functional targets involved in disease mechanisms. However, the intravital heterogeneity of EVs remains unclear, and the general limitation for analyzing EVs is the need for a certain volume of biofluids. Here, we present cellulose nanofiber (CNF) sheets to resolve these issues. We show that CNF sheets capture and preserve EVs from ~10 μL of biofluid and enable the analysis of bioactive molecules inside EVs. By attaching CNF sheets to moistened organs, we collect EVs in trace amounts of ascites, which is sufficient to perform small RNA sequence analyses. In an ovarian cancer mouse model, we demonstrate that CNF sheets enable the detection of cancer-associated miRNAs from the very early phase when mice did not have apparent ascites, and that EVs from different locations have unique miRNA profiles. By performing CNF sheet analyses in patients, we identify further location-based differences in EV miRNA profiles, with profiles reflecting disease conditions. We conduct spatial exosome analyses using CNF sheets to reveal that ascites EVs from cancer patients exhibit location-dependent heterogeneity. This technique could provide insights into EV biology and suggests a clinical strategy contributing to cancer diagnosis, staging evaluation, and therapy planning.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hirotaka Koga
- Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masami Kitagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukari Nagao
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mikiko Iida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shota Kawaguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Min Zhang
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takao Yasui
- Nagoya University Institute for Advanced Research, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
2
|
Dodangeh F, Sadeghi Z, Maleki P, Raheb J. Long non-coding RNA SOX2-OT enhances cancer biological traits via sponging to tumor suppressor miR-122-3p and miR-194-5p in non-small cell lung carcinoma. Sci Rep 2023; 13:12371. [PMID: 37524903 PMCID: PMC10390639 DOI: 10.1038/s41598-023-39000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
The oncogenic role of long non-coding RNA SOX2 overlapping transcript (SOX2-OT) has been demonstrated as a miRNA decay system that sponges tumor suppressor miRNA, including miR-122-3p in glioblastoma and miR-194-5p in glioblastoma, gastric, and colorectal cancers. However, the molecular function of SOX2-OT remains unknown in most cancers, including lung cancer. In the current study, we aimed to evaluate the downstream regulatory function of SOX2-OT in A549 and Calu-3 lung cancer cell lines. We knocked down SOX2-OT expression using an RNA interference system, which significantly decreased expression in A549 and Calu-3 cells. The expression of down-regulating miRNAs (miR-122-3p and miR-194-5p) was evaluated, revealing increased expression of miR-122-3p and miR-194-5p. Additionally, the expression of miRNAs downstream mRNA, including FOXO1 (Forkhead Box O1) and FOXA1 (Forkhead Box O1), changed. Recently, critical roles of FOXO1 and FOXA1 proteins in pathways involved in proliferation, metastasis and apoptosis have been demonstrated. Downstream changes in cellular traits were assessed using MTT, flow cytometry, metastasis and apoptosis assays. These assessments confirmed that the biological behaviors of lung cancer cells were influenced after SOX2-OT knockdown. In summary, the present study highlights the oncogenic role of SOX2-OT through the regulation of miR-122-3p/FOXO1 and miR-194-5p/FOXA1 pathways.
Collapse
Affiliation(s)
- Fatemeh Dodangeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Sadeghi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parichehr Maleki
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Jamshid Raheb
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
3
|
Sharma P, Bharat, Dogra N, Singh S. Small Regulatory Molecules Acting Big in Cancer: Potential Role of Mito-miRs in Cancer. Curr Mol Med 2020; 19:621-631. [PMID: 31340735 DOI: 10.2174/1566524019666190723165357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs [miRNAs] are short, non-coding, single stranded RNA molecules regulating gene expression of their targets at the posttranscriptional level by either degrading mRNA or by inhibiting translation. Previously, miRNAs have been reported to be present inside the mitochondria and these miRNAs have been termed as mito-miRs. Origin of these mito-miRs may either be from mitochondrial genome or import from nucleus. The second class of mito-miRs makes it important to unravel the involvement of miRNAs in crosstalk between nucleus and mitochondria. Since miRNAs are involved in various physiological processes, their deregulation is often associated with disease progression, including cancer. The current review focuses on the involvement of miRNAs in different mitochondrial mediated processes. It also highlights the importance of exploring the interaction of miRNAs with mitochondrial genome, which may lead to the development of small regulatory RNA based therapeutic options.
Collapse
Affiliation(s)
- Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Mansa Road, Bathinda 151001, Punjab, India
| | - Bharat
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Mansa Road, Bathinda 151001, Punjab, India
| | - Nilambra Dogra
- Centre for Systems Biology and Bioinformatics, Panjab University, Sector-25, Chandigarh 160014, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Mansa Road, Bathinda 151001, Punjab, India
| |
Collapse
|
4
|
Guglielmi L, Nardella M, Musa C, Cifola I, Porru M, Cardinali B, Iannetti I, Di Pietro C, Bolasco G, Palmieri V, Vilardo L, Panini N, Bonaventura F, Papi M, Scavizzi F, Raspa M, Leonetti C, Falcone G, Felsani A, D’Agnano I. Circulating miRNAs in Small Extracellular Vesicles Secreted by a Human Melanoma Xenograft in Mouse Brains. Cancers (Basel) 2020; 12:cancers12061635. [PMID: 32575666 PMCID: PMC7352810 DOI: 10.3390/cancers12061635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.
Collapse
Affiliation(s)
- Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Carla Musa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Manuela Porru
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Ilaria Iannetti
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (V.P.); (M.P.)
- Istituto di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | - Carlo Leonetti
- UOSD SAFU–IRCCS-Regina Elena Cancer Institute, 00168 Rome, Italy; (M.P.); (C.L.)
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (C.M.); (B.C.); (I.I.); (C.D.P.); (F.B.); (F.S.); (M.R.); (G.F.)
| | | | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20090 Segrate, Italy; (L.G.); (I.C.); (L.V.)
- Correspondence:
| |
Collapse
|
5
|
Zhang J, Pu XM, Xiong Y. kshv-mir-k12-1-5p promotes cell growth and metastasis by targeting SOCS6 in Kaposi's sarcoma cells. Cancer Manag Res 2019; 11:4985-4995. [PMID: 31213914 PMCID: PMC6549767 DOI: 10.2147/cmar.s198411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Kaposi’s sarcoma (KS) is a highly disseminated angiogenic tumour of endothelial cells. Many deregulated miRNAs, including kshv-mir-k12-1-5p, have been identified in KS. kshv-mir-k12-1-5p plays important roles in KS. However, the underlying mechanism is not fully understood. The aim of this study was to investigate the exact functions of kshv-mir-k12-1-5p in KS cells. Materials and methods: The biological functions of kshv-mir-k12-1-5p were studied using CCK-8, apoptosis, migration and invasion assays. Bioinformatics software was used to identify the target gene (SOCS6) of kshv-mir-k12-1-5p. A dual luciferase assay, Western blot (WB) and quantitative real-time polymerase chain reaction (q-PCR) were performed to further verify the target gene. The underlying molecular mechanisms of kshv-mir-k12-1-5p in KS cells were also explored. Results: kshv-mir-k12-1-5p can promote the proliferation, migration and invasion of KS cells and inhibit cell apoptosis. Suppressor of cytokine signalling 6 (SOCS6) was identified as a direct target of kshv-mir-k12-1-5p, and kshv-mir-k12-1-5p can downregulate SOCS6 expression. In addition, knockdown of SOCS6 rescued the effects of kshv-mir-k12-1-5p inhibitor. Hence, a direct relationship between kshv-mir-k12-1-5p and SOCS6 was confirmed. Conclusions: kshv-mir-k12-1-5p promotes the malignant phenotype of KS cells by targeting SOCS6, suggesting that kshv-mir-k12-1-5p could be a potential therapeutic target for KS.
Collapse
Affiliation(s)
- Jing Zhang
- Postgraduate College of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.,Department of Pathology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xiong-Ming Pu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Mannerström B, Paananen RO, Abu-Shahba AG, Moilanen J, Seppänen-Kaijansinkko R, Kaur S. Extracellular small non-coding RNA contaminants in fetal bovine serum and serum-free media. Sci Rep 2019; 9:5538. [PMID: 30940830 PMCID: PMC6445286 DOI: 10.1038/s41598-019-41772-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/18/2019] [Indexed: 01/04/2023] Open
Abstract
In the research field of extracellular vesicles (EVs), the use of fetal bovine serum (FBS) depleted of EVs for in vitro studies is advocated to eliminate the confounding effects of media derived EVs. EV-depleted FBS may either be prepared by ultracentrifugation or purchased commercially. Nevertheless, these preparations do not guarantee an RNA-free FBS for in vitro use. In this study we address the RNA contamination issue, of small non-coding (nc)RNA in vesicular or non-vesicular fractions of FBS, ultracentrifugation EV-depleted FBS, commercial EV-depleted FBS, and in our recently developed filtration based EV-depleted FBS. Commercially available serum- and xeno-free defined media were also screened for small ncRNA contamination. Our small ncRNA sequencing data showed that all EV-depleted media and commercially available defined media contained small ncRNA contaminants. Out of the different FBS preparations studied, our ultrafiltration-based method for EV depletion performed the best in depleting miRNAs. Certain miRNAs such miR-122 and miR-203a proved difficult to remove completely and were found in all media. Compared to miRNAs, other small ncRNA (snRNA, Y RNA, snoRNA, and piRNA) were difficult to eliminate from all the studied media. Additionally, our tested defined media contained miRNAs and other small ncRNAs, albeit at a much lower level than in serum preparations. Our study showed that no media is free of small ncRNA contaminants. Therefore, in order to screen for baseline RNA contamination in culturing media, RNA sequencing data should be carefully controlled by adding a media sample as a control. This should be a mandatory step before performing cell culture experiments in order to eliminate the confounding effects of media.
Collapse
Affiliation(s)
- Bettina Mannerström
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riku O Paananen
- Helsinki Eye Lab, Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ahmed G Abu-Shahba
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Jukka Moilanen
- Helsinki Eye Lab, Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riitta Seppänen-Kaijansinkko
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sippy Kaur
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
7
|
MiRAR-miRNA Activity Reporter for Living Cells. Genes (Basel) 2018; 9:genes9060305. [PMID: 29921790 PMCID: PMC6027049 DOI: 10.3390/genes9060305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
microRNA (miRNA) activity and regulation are of increasing interest as new therapeutic targets. Traditional approaches to assess miRNA levels in cells rely on RNA sequencing or quantitative PCR. While useful, these approaches are based on RNA extraction and cannot be applied in real-time to observe miRNA activity with single-cell resolution. We developed a green fluorescence protein (GFP)-based reporter system that allows for a direct, real-time readout of changes in miRNA activity in live cells. The miRNA activity reporter (MiRAR) consists of GFP fused to a 3′ untranslated region containing specific miRNA binding sites, resulting in miRNA activity-dependent GFP expression. Using qPCR, we verified the inverse relationship of GFP fluorescence and miRNA levels. We demonstrated that this novel optogenetic reporter system quantifies cellular levels of the tumor suppressor miRNA let-7 in real-time in single Human embryonic kidney 293 (HEK 293) cells. Our data shows that the MiRAR can be applied to detect changes in miRNA levels upon disruption of miRNA degradation pathways. We further show that the reporter could be adapted to monitor another disease-relevant miRNA, miR-122. With trivial modifications, this approach could be applied across the miRNome for quantification of many specific miRNA in cell cultures, tissues, or transgenic animal models.
Collapse
|