Lin L, He J, Li J, Xu Y, Li J, Wu Y. Chitosan Nanoparticles Strengthen Vγ9Vδ2 T-Cell Cytotoxicity Through Upregulation Of Killing Molecules And Cytoskeleton Polarization.
Int J Nanomedicine 2019;
14:9325-9336. [PMID:
31819434 PMCID:
PMC6890518 DOI:
10.2147/ijn.s212898]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background
During the past few years, immune cell therapy for malignant cancer has benefited a considerable amount of patients worldwide. As one of several promising candidates for immunotherapy, Vγ9Vδ2 γδ T cells have many unique biological advantages, such as non-MHC restriction and have been noted as the earliest source of IFN-γ. However, potentiating anti-tumor functions of γδ T cells has become of particular interest to researchers studying γδ T cell applications.
Purpose
In this study, we proposed a nanotechnology-based methodology for strengthening γδ T cell functions.
Methods
As a type of reliable, biocompatible material, chitosan nanoparticles (CSNPs) were used to enhance anti-tumor immunity of γδ T cells.
Results
First, we found that the size of prepared CSNPs distributed 50 to 100 nm, and that CSNPs had optimal immunocompatibility. Then, we observed that CSNPs could induce α-tubulin cytoskeleton polarization and rearrangement, correlating with a higher killing ability of γδ T cells. Furthermore, we revealed that CSNPs could enhance Vγ9Vδ2 T cell anti-tumor functions by upregulating killing of related receptors, including NKG2D, CD56, FasL, and perforin secretion.
Conclusion
Our work provided evidence of application for CSNPs based bio-carrier in immunotherapy. More importantly, we proposed a new strategy for enhancing γδ T cell anti-tumor activity using nanobiomaterial, which could benefit future clinical applications of γδ T cells.
Collapse