1
|
Li Z, Zhao H, Hu H, Shang H, Ren Y, Qiu W, Su H, Lyu H, Chen X. Mechanisms of resistance to trastuzumab in HER2-positive gastric cancer. Chin J Cancer Res 2024; 36:306-321. [PMID: 38988489 PMCID: PMC11230884 DOI: 10.21147/j.issn.1000-9604.2024.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.
Collapse
Affiliation(s)
- Zhifei Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Huan Zhao
- Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Huihui Hu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Haili Shang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Yongjing Ren
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Wenhui Qiu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Su
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Huifang Lyu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| |
Collapse
|
2
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
3
|
Li D, Wan X, Yun Y, Li Y, Duan W. Genes Selectively Expressed in Rat Organs. Curr Genomics 2024; 25:261-297. [PMID: 39156728 PMCID: PMC11327808 DOI: 10.2174/0113892029273121240401060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 08/20/2024] Open
Abstract
Background Understanding organic functions at a molecular level is important for scientists to unveil the disease mechanism and to develop diagnostic or therapeutic methods. Aims The present study tried to find genes selectively expressed in 11 rat organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach. Materials and Methods Three normal male Sprague-Dawley (SD) rats were anesthetized, their organs mentioned above were harvested, and RNA in the fresh organs was extracted. Purified RNA was reversely transcribed and sequenced using the Solexa high-throughput sequencing technique. The abundance of a gene was measured by the expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM). Genes in organs with the highest expression level were sought out and compared with their median value in organs. If a gene in the highest expressed organ was significantly different (p < 0.05) from that in the medianly expressed organ, accompanied by q value < 0.05, and accounted for more than 70% of the total abundance, the gene was assumed as the selective gene in the organ. Results & Discussion The Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) pathways were enriched by the highest expressed genes. Based on the criterion, 1,406 selective genes were screened out, 1,283 of which were described in the gene bank and 123 of which were waiting to be described. KEGG and GO pathways in the organs were partly confirmed by the known understandings and a good portion of the pathways needed further investigation. Conclusion The novel selective genes and organic functional pathways are useful for scientists to unveil the mechanisms of the organs at the molecular level, and the selective genes' products are candidate disease markers for organs.
Collapse
Affiliation(s)
- Dan Li
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulian Wan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yu Yun
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yongkun Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
4
|
Azadeh Jouneghani M, Keshavarzi F, Haghnazari N, Amini S, Hooshmandi Z. The Association of rs5745687 Polymorphism Located at HGF Gene with Risk of Gastric and Breast Cancer in the Helicobacter Positive Patients of Isfahan Population. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022; 15. [DOI: 10.5812/ijcm-118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/24/2022] [Accepted: 09/10/2022] [Indexed: 12/11/2024]
Abstract
Background: Hepatocyte growth factor (HGF) protein regulates cell growth, motility, and morphogenesis in a variety of cells and tissues by binding to the HGF receptor. The rs5745687 SNPs in the introns of the HGF gene could affect the splicing and expression of HGF mRNA. Objectives: In this study, the genotype frequency of rs5745687 in breast cancer (BC) and gastric cancer (GC) (positive helicobacter) patients has been investigated and compared with the healthy controls in the Isfahan population. Methods: Firstly, initial bioinformatics studies were done. Then, according to the results, bioinformatics high-resolution melt (HRM) and real-time PCR were recruited to determine genotypes rs5745678 for 432 participants in the case-control analysis (84 GC with 126 healthy control samples, as well as 111 BC cases with 111 normal controls). The conditional logistic regression model was used to measure odds ratios (OR) and 95% confidence intervals (CI) to produce these cancers based on genotype frequency. Results: The homozygote genotype of the mutant (G) allele of rs5745678 has a significant association with the lower risk of gastric cancer (P-value < 0.0001) and this allele can increase the risk of GC in a co-dominant model (OR: 5.541, P-value < 0.0001). Also, the rs5745678 SNP had a significant association with the clinicopathological features (age, smoking, Helicobacter Pylori infection) in GC patients. Conclusions: The presence of a single G allele in rs5745678 heterozygote (AG/AA) and co-dominant (AG/AA+GG) models could significantly impact GC pathogenicity in different ways. There was no significant correlation between the rs5745678 polymorphism and BC (P-value: 0.671) in the studied sample size.
Collapse
|
5
|
Chen WD, Zhang X, Zhang MJ, Zhang YP, Shang ZQ, Xin YW, Zhang Y. Salivary Fusobacterium nucleatum serves as a potential diagnostic biomarker for gastric cancer. World J Gastroenterol 2022; 28:4120-4132. [PMID: 36157109 PMCID: PMC9403436 DOI: 10.3748/wjg.v28.i30.4120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As one of the most common tumors, gastric cancer (GC) has a high mortality rate, since current examination approaches cannot achieve early diagnosis. Fusobacterium nucleatum (Fn) primarily colonized in the oral cavity, has been reported to be involved in the development of gastrointestinal tumor. Until now, little is known about the relationship between salivary Fn and GC.
AIM To determine whether salivary Fn could be a biomarker to diagnose GC and explore the influence of Fn on GC cells.
METHODS The abundance of Fn in saliva was quantified by droplet digital polymerase chain reaction in 120 GC patients, 31 atrophic gastritis (AG) patients, 35 non-AG (NAG) patients, 26 gastric polyp (GP) patients, and 20 normal controls (NC) from Qilu Hospital of Shandong University from January 2019 to December 2020. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of Fn as well as traditional serum tumor markers, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9, and CA72-4. Transwell assay and wound-healing assay were conducted to assess the influence of Fn infection on GC cells. The expression of epithelial-mesenchymal transition (EMT) markers was detected using western blot assay.
RESULTS We found that the level of salivary Fn in GC patients was significantly increased compared with those in AG, NAG, and GP patients and NC (P < 0.001). ROC curve analysis showed a favorable capability of Fn (73.33% sensitivity; 82.14% specificity; area under the curve: 0.813) in GC diagnosis, which was superior to that of CEA, CA19-9, CA72-4, ferritin, and sialic acid. The Fn level in saliva of GC patients was increased as the TNM stage increased. GC patients with lymph node metastasis had higher Fn levels than those without metastasis. Both transwell and wound-healing assays indicated that Fn infection promoted the migration and invasion of GC cells. Western blot analysis showed that Fn infection decreased the expression of E-cadherin and increased the expressions of N-cadherin, vimentin, and snail.
CONCLUSION Fn abundance in saliva could be used as a promising biomarker to diagnose GC, and Fn infection could promote GC metastasis by accelerating the EMT process.
Collapse
Affiliation(s)
- Wen-Dan Chen
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Meng-Jiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ya-Ping Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Zi-Qi Shang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Wei Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
6
|
Inhibition of MACC1-Induced Metastasis in Esophageal and Gastric Adenocarcinomas. Cancers (Basel) 2022; 14:cancers14071773. [PMID: 35406545 PMCID: PMC8997092 DOI: 10.3390/cancers14071773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Esophageal and Gastric Adenocarcinomas (AGE/S) are characterized by early metastasis and poor survival. MACC1 (Metastasis Associated in Colon Cancer 1) acts in colon cancer as a metastasis inducer and is linked to reduced survival. In this study, we analyzed the prognostic role of MACC1 in a large AGE/S cohort and the potential of MACC1 inhibition in vitro and in vivo. MACC1 is an independent negative prognostic marker in our cohort. In vitro, migration was enhanced by MACC1 in overexpressing cells. This MACC1-related effect could be inhibited by using selumetinib in vitro. In vivo, MACC1 induced faster and larger metastasis development, which could be inhibited by selumetinib. In conclusion, MACC1 is a strong negative prognostic factor in AGE/S and is a potential target for therapy with selumetinib. Abstract Esophageal and Gastric Adenocarcinomas (AGE/S) are characterized by early metastasis and poor survival. MACC1 (Metastasis Associated in Colon Cancer 1) acts in colon cancer as a metastasis inducer and is linked to reduced survival. This project illuminates the role and potential for the inhibition of MACC1 in AGE/S. Using 266 of 360 TMAs and survival data of AGE/S patients, we confirm the value of MACC1 as an independent negative prognostic marker in AGE/S patients. MACC1 gene expression is correlated with survival and morphological characteristics. In vitro analysis of lentivirally MACC1-manipulated subclones of FLO-1 and OE33 showed enhanced migration induced by MACC1 in both cell line models, which could be inhibited by the MEK1 inhibitor selumetinib. In vivo, the efficacy of selumetinib on tumor growths and metastases of MACC1-overexpressing FLO-1 cells xenografted intrasplenically in NOG mice was tested. Mice with high-MACC1-expressing cells developed faster and larger distant metastases. Treatment with selumetinib led to a significant reduction in metastasis exclusively in the MACC1-positive xenografts. MACC1 is an enhancer of tumor aggressiveness and a predictor of poor survival in AGE/S. This effect can be inhibited by selumetinib.
Collapse
|
7
|
Mao X, Wang J, Luo F. Alpha-fetoprotein can promote gastric cancer progression via upregulation of metastasis-associated colon cancer 1. Oncol Lett 2022; 23:84. [PMID: 35126726 DOI: 10.3892/ol.2022.13204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
High serum alpha-fetoprotein (AFP) level is a predictor of poor prognosis in patients with gastric cancer (GC). AFP-producing GC (AFP-GC) is an aggressive subtype of GC characterized by a high incidence of liver metastasis and high c-Met expression. High expression of metastasis-associated colon cancer 1 (MACC1), which is the transcription activator of c-Met, also predicts a poor prognosis of GC. c-Met is known to be involved in tumor progression into malignant invasive phenotypes. Considering that high c-Met expression is simultaneously positively correlated with high AFP and MACC1 expression levels and that high expression of AFP or MACC1 predicts poor prognosis in GC, we hypothesized that an interaction may exist between AFP and MACC1. In the present study, GC cell lines with AFP-overexpression, MACC1-downregulation and the combination of both transfections were used as experimental models. The relative mRNA and protein expression of c-Met, AFP and MACC1 were analyzed using reverse transcription quantitative PCR and western blotting, respectively. Cell viability was evaluated using Cell Counting Kit-8 assay. Cell invasion and cell migration were examined using Transwell migration assay with and without Matrigel, respectively. The results demonstrated that, compared with the control group, the mRNA and protein expression of MACC1was significantly elevated in the AFP-overexpressed group and in the group with AFP overexpressed and MACC1 downregulated. Furthermore, a significantly enhanced cell viability, migration and invasion were observed in the AFP-overexpressing group, whereas opposite effects were found in the MACC1-downregulating group. In summary, the results from this study indicated that AFP may promote GC progression by stimulating MACC1. This finding may help illustrating the aggressive behaviors of GC in patients with high AFP serum level and AFP-GC.
Collapse
Affiliation(s)
- Xiang Mao
- Department of General Surgery, Huashan Hospital, Shanghai 200040, P.R. China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital, Shanghai 200040, P.R. China
| | - Fen Luo
- Department of General Surgery, Huashan Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
8
|
Han H, Li M, Liu H, Li H. Electroacupuncture regulates inflammation, collagen deposition and macrophage function in skeletal muscle through the TGF-β1/Smad3/p38/ERK1/2 pathway. Exp Ther Med 2021; 22:1457. [PMID: 34737797 PMCID: PMC8561769 DOI: 10.3892/etm.2021.10892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injury is one of the most common sports injury, which accounts for ~40% of all sports-related injuries among the elderly. In addition, cases of full recovery from treatment are rare. Although electroacupuncture (EA) is an integral aspect of traditional Chinese medicine, the effects of EA on skeletal muscle fibrosis and the possible underlying mechanism remain unclear. To investigate the effect and potential mechanism of EA on skeletal inflammation, collagen deposition and macrophage function, a skeletal muscle injury model was established by injecting 100 µl cardiotoxin into the anterior tibial muscle of Sprague Dawley rats. The animals were randomly divided into the following three groups: Control, model and EA. The expression of inflammation-related factors (IL-6, IL-4, IL-33, IL-10 and TNF-α) were measured using ELISA. H&E staining, Masson's staining and immunohistochemistry (collagen II, Axin2 and β-catenin) were performed to assess collagen deposition and fibrosis in the muscle tissues. Additionally, immunofluorescence was performed to measure the ratio of M1 to M2 macrophages. Western blotting was performed to examine the activity of the TGF-β1/Smad3/p38/ERK1/2 pathway. Compared with that in the control rats, the mental state, such as the degree of activity and excitement, of the model rats deteriorated, with clear activity limitations. Compared with those in the model rats, EA-treated rats exhibited improved mental status and activity, reduced levels of IL-6, IL-4 and TNF-α, reduced collagen deposition and fibrosis, in addition to increased expression of IL-33 and IL-10. This improvement became increasingly evident with prolonged intervention time. EA also promoted the transformation of macrophages from the M1 into the M2 sub-type, where the M1/M2 ratio on day 7 was lower compared with that on day 14. Western blotting results showed that compared with that in the model rats, the expression of TGF-β1, MMP-2, MMP-7 and the activation of Smad3 and p38 was decreased in EA-treated rats, whilst the activation of ERK1/2 was significantly elevated. In conclusion, EA can inhibit inflammation and collagen deposition whilst promoting the transformation of macrophages from the M1 into the M2 sub-type. The underlying mechanism was found to be associated with TGF-β1/Smad3/p38/ERK1/2 signaling.
Collapse
Affiliation(s)
- Hong Han
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei 430000, P.R. China
| | - Ming Li
- Department of Rehabilitation, Hubei Provincial Hospital, Wuhan, Hubei 430071, P.R. China
| | - Huilin Liu
- Department of Neurological Physical Therapy, China Rehabilitation Research Center, Bo Ai Hospital, Beijing 100068, P.R. China
| | - Haohan Li
- The Facility of Business and Law, Deakin University Health Faculty, Geelong, Victoria 3220, Australia
| |
Collapse
|
9
|
Wen J, Xie Y, Zhang Y, Li J, Li J, Zhang Y, Lu X, Zhang Y, Liu Y, Liu T, Li L. MACC1 Contributes to the Development of Osteosarcoma Through Regulation of the HGF/c-Met Pathway and Microtubule Stability. Front Cell Dev Biol 2020; 8:825. [PMID: 33425885 PMCID: PMC7793648 DOI: 10.3389/fcell.2020.00825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most prevalent human bone malignancy, and presents a global annual morbidity of approximately five cases per million. Notably, precise and efficient targeted therapy has become the most promising strategy for the treatment of OS; however, there is still an urgent need for the identification of suitable therapeutic targets. Metastasis-associated in colon cancer 1 (MACC1) was first identified in colon tumors by differential display RT-PCR, and was shown to be involved in the regulation of colon tumor growth and metastasis through the hepatocyte growth factor (HGF)/c-Met signaling pathway. Additionally, MACC1 overexpression has been reported to induce the growth of several types of cancers, including glioblastoma multiforme and gastric cancer. However, whether MACC1 also plays a role in the progression of OS remains unclear. In this study, we found that MACC1 was highly expressed in human OS tissues, as well as in U-2OS and MG-63 cells, when compared with normal tissues and osteoblasts, respectively. Our data further indicated that MACC1 expression was correlated with several clinicopathological features of OS. Through in vitro assays, we found that MACC1 depletion markedly suppressed the proliferative ability of both OS cells and endothelial cells, and inhibited the angiogenic capacity of endothelial cells. Similarly, MACC1 depletion inhibited tumor growth, metastasis, and angiogenesis in mice. Mechanistically, we found that MACC1 could bind to the MET promoter, and enhanced the proliferation of both OS cells and endothelial cells through the HGF/c-Met signaling pathway. Furthermore, we show that MACC1 also promoted angiogenesis by regulating microtubule dynamics, thereby promoting the progression of OS. Our results indicate that MACC1 may be a new and promising therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Jia Wen
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yingqiang Zhang
- Department of Interventional Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiazhen Li
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xinchang Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yongkui Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Tao Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Longqing Li
- Department of Orthopedics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Feretis T, Katselis C, Papanikolaou IG, Apostolou K, Tsikalakis S, Toutouzas KG, Theodoropoulos G, Trigka EA, Saetta AA, Alexakis N, Konstandoulakis M, Tsarea K, Karamperi M, Kletsas D, Patsouris E, Manouras A, Zografos GC, Papalois A. ATSC transplantation contributes to liver regeneration following paracetamol-induced acute liver injury through differentiation into hepatic-like cells. AMERICAN JOURNAL OF STEM CELLS 2020; 9:36-56. [PMID: 32699656 PMCID: PMC7364386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a leading cause of acute liver injury (ALI). Acetaminophen (also termed paracetamol), can often be found in drugs that may be abused (i.e., prescription for pain relief). Animal experiments have shown that mesenchymal stem cell transplantation can ameliorate or even reverse hepatic injury. MATERIAL AND METHODS ALI was induced in Wistar rats using paracetamol. ATSCs were transplanted via the intravenous, portal vein, or intrahepatic route directly onto the liver parenchyma. Histological evaluation was conducted to assess drug-induced injury following transplantation. Fluorescence in situ hybridization (FISH) was used to verify the location of stem cells on the liver parenchyma. The effect of those cells on liver regeneration was tested by immunohistochemistry for hepatic growth factor (HGF). In addition, reverse transcription-quantitative PCR (qRT-PCR) was used to assess hepatic growth factor (HGF), hepatic nuclear factor 4α (HNF4α), cytochrome P450 1A2 (CYP1A2) and α-fetoprotein (AFP) mRNA expression. RESULTS Immunohistochemical staining for HGF was stronger in the transplanted groups than that in the control group (P<0.001). HNF4α and HGF mRNA levels were increased on day 7 following transplantation (P<0.001 and P=0.009, respectively). CYP1A2 mRNA levels were also increased (P=0.013) in the intravenous groups, while AFP levels were higher in the intrahepatic groups (P=0.006). ATSC transplantation attenuates ALI injury and promotes liver regeneration. Furthermore, expression of specific hepatic enzymes points to ATSC hepatic differentiation. CONCLUSION The study showed the positive effects of transplanted adipose tissue stem cells (ATSCs) on liver regeneration (LG) through hepatotrophic factors. Furthermore, increased expression of hepatic specific proteins was recorded in ATSC transplanted groups that indicate stem cells differentiation into hepatic cells.
Collapse
Affiliation(s)
- Themistoklis Feretis
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
| | - Charalampos Katselis
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
| | - Ioannis G Papanikolaou
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
| | - Konstantinos Apostolou
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
| | - Spyridon Tsikalakis
- Department of Pathology, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Konstantinos G Toutouzas
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - George Theodoropoulos
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Eleni Andrianna Trigka
- Department of Pathology, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Angelica A Saetta
- Department of Pathology, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Nicholas Alexakis
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Manousos Konstandoulakis
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Kalliopi Tsarea
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
| | - Maria Karamperi
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
| | - Dimitrios Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biology NCSR ‘Demokritos’Athens 15310, Greece
| | - Efstratios Patsouris
- Department of Pathology, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Andreas Manouras
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Georgios C Zografos
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
| | - Apostolos Papalois
- 1 Department of Propaedeutic Surgery, Medical School, National Kapodistrian University of Athens, Hippocratio HospitalAthens 11527, Greece
- Experimental, Educational Research Center, ELPEN Pharmaceuticals190 09 Pikermi, Greece
- European University Cyprus, Medical SchoolNicosia 2404, Cyprus
| |
Collapse
|
11
|
Radhakrishnan H, Walther W, Zincke F, Kobelt D, Imbastari F, Erdem M, Kortüm B, Dahlmann M, Stein U. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev 2019; 37:805-820. [PMID: 30607625 DOI: 10.1007/s10555-018-9771-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deciphering the paths to metastasis and identifying key molecules driving this process is one important issue for understanding and treatment of cancer. Such a key driver molecule is Metastasis Associated in Colon Cancer 1 (MACC1). A decade long research on this evolutionarily conserved molecule with features of a transcription factor as well as an adapter protein for versatile protein-protein interactions has shown that it has manifold properties driving tumors to their metastatic stage. MACC1 transcriptionally regulates genes involved in epithelial-mesenchymal transition (EMT), including those which are able to directly induce metastasis like c-MET, impacts tumor cell migration and invasion, and induces metastasis in solid cancers. MACC1 has proven as a valuable biomarker for prognosis of metastasis formation linked to patient survival and gives promise to also act as a predictive marker for individualized therapies in a broad variety of cancers. This review discusses the many features of MACC1 in the context of the hallmarks of cancer and the potential of this molecule as biomarker and novel therapeutic target for restriction and prevention of metastasis.
Collapse
Affiliation(s)
- Harikrishnan Radhakrishnan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Fabian Zincke
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Francesca Imbastari
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Müge Erdem
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|