1
|
Ma Q, Liu L, Sun N, Gao L, Chen Y, Liu L, Guo W, Yang X. Glioblastoma with a primitive neuronal component: A case report. Oncol Lett 2023; 26:341. [PMID: 37427343 PMCID: PMC10326655 DOI: 10.3892/ol.2023.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
The present study describes a rare case of glioblastoma with a primitive neuronal component (GBM-PNC), and provides an in-depth analysis of the clinical, pathological and differential diagnostic findings. A comprehensive literature review was conducted to enhance the understanding of GBM-PNC, revealing its distinct characteristics and prognostic implications. A 57-year-old woman presented with acute onset headache, nausea and vomiting, leading to the identification of an intracranial mass through magnetic resonance imaging. Surgical resection revealed the coexistence of a glial component and a PNC within the tumor. Immunohistochemical analysis detected the expression of glial fibrillary acidic protein in the glial component and synaptin in the PNC. The pathological diagnosis confirmed the presence of GBM-PNC. Gene detection analysis revealed no mutations in isocitrate dehydrogenase (IDH)1 and IDH2, and neurotrophic tyrosine kinase receptor-1 (NTRK1), NTRK2 and NTRK3 genes. GBM-PNC is characterized by a propensity for recurrence and metastasis, with a low 5-year survival rate. The present case report highlights the importance of accurate diagnosis and comprehensive characterization of GBM-PNC to guide treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Limin Liu
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Naiying Sun
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Lixiang Gao
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Ying Chen
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Li Liu
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Wenjun Guo
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Xingjie Yang
- Department of Pathology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
2
|
Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021; 8:rbab062. [PMID: 34868634 PMCID: PMC8634494 DOI: 10.1093/rb/rbab062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumour, with a median survival of 3 months without treatment and 15 months with treatment. Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures. Magnetic resonance imaging (MRI) using contrast agents is the preferred method for the preoperative detection of GBM tumours. However, commercially available clinical contrast agents do not accurately distinguish between GBM, surrounding normal tissue and other cancer types due to their limited ability to cross the blood–brain barrier, their low relaxivity and their potential toxicity. New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents. Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents. The surfaces of nanoparticles (NPs) can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites. Using advanced imaging technology, multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information. NPs can also serve as drug delivery systems for GBM treatments. This review focuses on the research progress for GBM-targeting MRI contrast agents as well as MRI-guided GBM therapy.
Collapse
Affiliation(s)
- Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lixiong Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ke Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Rong T, Zou W, Qiu X, Cui W, Zhang D, Wu B, Kang Z, Li W, Liu B. A Rare Manifestation of a Presumed Non-Osteophilic Brain Neoplasm: Extensive Axial Skeletal Metastases From Glioblastoma With Primitive Neuronal Components. Front Oncol 2021; 11:760697. [PMID: 34796114 PMCID: PMC8593252 DOI: 10.3389/fonc.2021.760697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. GBM with primitive neuronal component (GBM-PNC) is an aggressive variant identified in 0.5% of GBMs. Extracranial metastasis from GBM-PNC is a rare and challenging situation. Methods A special case of early-onset GBM with systemic bone metastasis was enrolled. Clinical data, including patient characteristics, disease course, and serial radiological images were retrieved and analyzed. Tumor tissues were obtained by surgical resections and were made into formalin-fixed paraffin-embedded sections. Histopathological examinations and genetic testing were performed for both the primary and metastatic tumor specimens. Results A 20-year-old man suffered from GBM with acute intratumoral hemorrhage of the left temporal lobe. He was treated by gross total resection and chemoradiotherapy following the Stupp protocol. Seven months later, he returned with a five-week history of progressive neck pain and unsteady gait. The radiographic examinations identified vertebral collapse at C4 and C6. Similar osteolytic lesions were also observed at the thoracolumbar spine, pelvic, and left femur. Anterior spondylectomy of C4 and C6 was performed. The resected vertebral bodies were infiltrated with greyish, soft, and ill-defined tumor tissue. One month later, he developed mechanical low-back pain and paraplegia caused by thoracolumbar metastases. Another spine surgery was performed, including T10 total en-bloc spondylectomy, T7-9, L2-3, and L5-S1 laminectomy. After the operation, the patient’s neurological function and spinal stability remained stable. However, he finally succumbed to the rapidly increased tumor burden and died 15 months from onset because of cachexia and multiple organ failure. In addition to typical GBM morphology, the histological examinations identified monomorphic small-round cells with positive immunohistochemical staining of synaptophysin and CD99, indicating the coexistence of PNC. The next-generation sequencing detected pathogenic mutations in TP53 and DNMT3A. Based on above findings, a confirmed diagnosis of systemic metastases from GBM-PNC (IDH-wild type, WHO grade IV) was made. Conclusions The present case highlights the occurrence and severity of extensive axial skeletal metastases from GBM-PNC. This rare variant of GBM requires aggressive multimodal treatment including surgery and chemoradiotherapy targeting PNC. The pathological screening of PNC is recommended in patients with early-onset GBM and intratumoral hemorrhage. Surgery for spinal metastasis is appropriate in patients with chemoradioresistance and relatively good general status, with the objectives of restoring spinal stability and relieving spinal cord compression.
Collapse
Affiliation(s)
- Tianhua Rong
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.,Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wanjing Zou
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Cui
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Duo Zhang
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Bingxuan Wu
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.,Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhuang Kang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baoge Liu
- Department of Orthopaedic Surgery, Spine Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.,Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Sun P, Fan DJ, Fan T, Li X, Qi XL, Zhao XG, Gai QF. A Prospective Clinical Study on MGMT Protein Expression and the Effect of Gene Promoter Methylation on Sensitivity to Chemotherapeutics in Spinal Glioma. J Inflamm Res 2021; 14:4777-4784. [PMID: 34566423 PMCID: PMC8458026 DOI: 10.2147/jir.s321790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The present study discusses the O6-methylguanine-DNA methyltransferase (MGMT) protein expression of spinal glioma cells and the correlation between the sensitivity of promoter methylation of the MGMT gene to chemotherapy drugs, establishes a prediction method for the sensitivity of chemotherapy drugs on spinal gliomas, providing a theoretical basis for determining the best chemotherapy regimens for clinical patients after a spinal glioma operation. Methods A total of 67 patients, who received microsurgical resection for spinal glioma from October 2010 to June 2016, were selected for the present study. Immunohistochemistry and methylation were performed after the operation. Among these patients, 47 patients with postoperative chemotherapy were assigned as the experimental group, while 20 patients without chemotherapy were designated as the control group. Results Among the 47 patients in the experimental group, 39 patients had no tumor recurrence after two years, while tumors increased and symptoms were aggravated in eight patients. The progression-free survival rate of chemotherapy was 82.9%, and the two-year survival rate was 100%. The adverse reactions of patients during chemotherapy were slight. Among the 20 patients in the control group, seven patients had no tumor recurrence, while 13 patients had increased tumor size, and the progression-free survival rate was 35.0%. Conclusion Under the guidance of MGMT immunohistochemical detection and MGMT gene promoter methylation detection after surgery, chemotherapy can effectively delay tumor recurrence, prevent a reoperation, and have good safety and tolerability. This chemotherapy regimen has good prospects.
Collapse
Affiliation(s)
- Peng Sun
- Baoding Second Hospital, Hebei, 071051, People's Republic of China
| | - Duo-Jiao Fan
- Baoding Second Hospital, Hebei, 071051, People's Republic of China
| | - Tao Fan
- Department of Neurosurgery Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, People's Republic of China
| | - Xin Li
- Department of Neurosurgery, Baoding No. 1 Central Hospital, Hebei, 071051, People's Republic of China
| | - Xue-Ling Qi
- Department of Neurosurgery Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, People's Republic of China
| | - Xin-Gang Zhao
- Department of Neurosurgery Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, People's Republic of China
| | - Qi-Fei Gai
- Department of Neurosurgery Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, People's Republic of China
| |
Collapse
|
5
|
Herrera-Oropeza GE, Angulo-Rojo C, Gástelum-López SA, Varela-Echavarría A, Hernández-Rosales M, Aviña-Padilla K. Glioblastoma multiforme: a multi-omics analysis of driver genes and tumour heterogeneity. Interface Focus 2021; 11:20200072. [PMID: 34123356 PMCID: PMC8193468 DOI: 10.1098/rsfs.2020.0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common brain cancer in adults with the lowest life expectancy. The current neuro-oncology practice has incorporated genes involved in key molecular events that drive GBM tumorigenesis as biomarkers to guide diagnosis and design treatment. This study summarizes findings describing the significant heterogeneity of GBM at the transcriptional and genomic levels, emphasizing 18 driver genes with clinical relevance. A pattern was identified fitting the stem cell model for GBM ontogenesis, with an upregulation profile for MGMT and downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal subtype. We also detected overexpression of EGFR, NES, VIM and TP53 in the classical subtype and of MKi67 and OLIG2 genes in the proneural subtype. Furthermore, we found a combination of the four biomarkers EGFR, NES, OLIG2 and VIM with a remarkable differential expression pattern which confers them a strong potential to determine the GBM molecular subtype. A unique distribution of somatic mutations was found for the young and adult population, particularly for genes related to DNA repair and chromatin remodelling, highlighting ATRX, MGMT and IDH1. Our results also revealed that highly lesioned genes undergo differential regulation with particular biological pathways for young patients. This multi-omic analysis will help delineate future strategies related to the use of these molecular markers for clinical decision-making in the medical routine.
Collapse
Affiliation(s)
- Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Carla Angulo-Rojo
- Centro de Investigación Aplicada a la Salud, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Santos Alberto Gástelum-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | | | | | - Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.,Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Gharbavi M, Johari B, Rismani E, Mousazadeh N, Taromchi AH, Sharafi A. NANOG Decoy Oligodeoxynucleotide-Encapsulated Niosomes Nanocarriers: A Promising Approach to Suppress the Metastatic Properties of U87 Human Glioblastoma Multiforme Cells. ACS Chem Neurosci 2020; 11:4499-4515. [PMID: 33283497 DOI: 10.1021/acschemneuro.0c00699] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, advances in the synthesis and development of multifunctional nanoparticle platforms have opened up great opportunities and advantages for specifically targeted delivery of genes of interest. BSA-coated niosome structures (NISM@B) can potentially improve the efficiency in vitro delivery of nucleic acid molecules and the transfection of genes. Few studies have reported the combined use of niosomes with nucleic acid as therapeutic agents or decoy oligodeoxynucleotides (ODNs). Herein, we synthesized NISM@B to encapsulate NANOG decoy ODN (NISM@B-DEC), after which the physicochemical characteristics and in vitro and in vivo properties of NISM@B-DEC were investigated. Our results regarding physicochemical characteristics revealed that the stable niosome nanocarrier system was successfully synthesized with a regular spherical shape and narrow size distribution with proper zeta-potential values and had an appropriate biocompatibility. The ODN release from the niosome nanocarrier system exhibited controlled and pH-dependent behavior as the best models to explain the ODN release profile. NISM@B-DEC was efficiently taken up by human glioblastoma cells (U87) and significantly inhibited cell growth. Finally, blockage of the NANOG pathway by NISM@B-DEC resulted in G1 cell cycle arrest, apoptosis, and cell death. In addition, NISM@B-DEC caused a significant decrease in tumor formation and improved wound-healing efficiency of the U87 cells. These findings confirm that NISM@B-DEC could potentially suppress the metastatic ability of these cells. It can be concluded that the presented nanocarrier system can be a promising approach for targeted gene delivery in cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Taromchi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
Glioblastoma with a primitive neuroectodermal component: two cases with implications for glioblastoma cell-of-origin. Clin Imaging 2020; 73:139-145. [PMID: 33406475 DOI: 10.1016/j.clinimag.2020.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain malignancy, but much remains unknown about the histogenesis of these tumors. In the great majority of cases, GBM is a purely glial tumor but in rare cases the classic-appearing high-grade glioma component is admixed with regions of small round blue cells with neuronal immunophenotype, and these tumors have been defined in the WHO 2016 Classification as "glioblastoma with a primitive neuronal component." METHODS In this paper, we present two cases of GBM-PNC with highly divergent clinical courses, and review current theories for the GBM cell-of-origin. RESULTS AND CONCLUSIONS GBM-PNC likely arises from a cell type competent to give rise to glial or neuronal lineages. The thesis that GBM recapitulates to some extent normal neurodevelopmental cellular pathways is supported by molecular and clinical features of our two cases of GBM-PNC, but more work is needed to determine which cellular precursor gives rise to specific cases of GBM. GBM-PNC may have a dramatically altered clinical course compared to standard GBM and may benefit from specific lines of treatment.
Collapse
|
8
|
Shayganfar A, Ebrahimian S, Mahzouni P, Shirani F, Aalinezhad M. A review of glioblastoma tumors with primitive neuronal component and a case report of a patient with this uncommon tumor at a rare location. Clin Case Rep 2020; 8:2600-2604. [PMID: 33363787 PMCID: PMC7752627 DOI: 10.1002/ccr3.3228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma with primitive neuronal component should be considered as a differential diagnosis of infratentorial tumors.
Collapse
Affiliation(s)
- Azin Shayganfar
- Department of RadiologyIsfahan University of Medical SciencesIsfahanIran
| | - Shadi Ebrahimian
- Department of RadiologyIsfahan University of Medical SciencesIsfahanIran
| | - Parvin Mahzouni
- Department of PathologyIsfahan University of Medical SciencesIsfahanIran
| | - Fattane Shirani
- Department of RadiologyIsfahan University of Medical SciencesIsfahanIran
| | - Marzieh Aalinezhad
- Department of RadiologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
9
|
Birzu C, Tran S, Bielle F, Touat M, Mokhtari K, Younan N, Psimaras D, Hoang‐Xuan K, Sanson M, Delattre J, Idbaih A. Leptomeningeal Spread in Glioblastoma: Diagnostic and Therapeutic Challenges. Oncologist 2020; 25:e1763-e1776. [PMID: 33394574 PMCID: PMC7648332 DOI: 10.1634/theoncologist.2020-0258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. Leptomeningeal spread (LMS) is a severe complication of GBM, raising diagnostic and therapeutic challenges in clinical routine. METHODS We performed a review of the literature focused on LMS in GBM. MEDLINE and EMBASE databases were queried from 1989 to 2019 for articles describing diagnosis and therapeutic options in GBM LMS, as well as risk factors and pathogenic mechanisms. RESULTS We retrieved 155 articles, including retrospective series, case reports, and early phase clinical trials, as well as preclinical studies. These articles confirmed that LMS in GBM remains (a) a diagnostic challenge with cytological proof of LMS obtained in only 35% of cases and (b) a therapeutic challenge with a median overall survival below 2 months with best supportive care alone. For patients faced with suggestive clinical symptoms, whole neuroaxis magnetic resonance imaging and cerebrospinal fluid analysis are both recommended. Liquid biopsies are under investigation and may help prompt a reliable diagnosis. Based on the literature, a multimodal and personalized therapeutic approach of LMS, including surgery, radiotherapy, systemic cytotoxic chemotherapy, and intrathecal chemotherapies, may provide benefits to selected patients. Interestingly, molecular targeted therapies appear promising in case of actionable molecular target and should be considered. CONCLUSION As the prognosis of glioblastoma is improving over time, LMS becomes a more common complication. Our review highlights the need for translational studies and clinical trials dedicated to this challenging condition in order to improve diagnostic and therapeutic strategies. IMPLICATIONS FOR PRACTICE This review summarizes the diagnostic tools and applied treatments for leptomeningeal spread, a complication of glioblastoma, as well as their outcomes. The importance of exhaustive molecular testing for molecular targeted therapies is discussed. New diagnostic and therapeutic strategies are outlined, and the need for translational studies and clinical trials dedicated to this challenging condition is highlighted.
Collapse
Affiliation(s)
- Cristina Birzu
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Suzanne Tran
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neuropathologie‐EscourolleParisFrance
| | - Franck Bielle
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neuropathologie‐EscourolleParisFrance
| | - Mehdi Touat
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Karima Mokhtari
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neuropathologie‐EscourolleParisFrance
| | - Nadia Younan
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Dimitri Psimaras
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Khe Hoang‐Xuan
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Marc Sanson
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Jean‐Yves Delattre
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Ahmed Idbaih
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| |
Collapse
|
10
|
Sánchez-Ortega JF, Aguas-Valiente J, Sota-Ochoa P, Calatayud-Pérez J. Glioblastoma with primitive neuronal component: A case report and considerations of fluorescence-guided surgery. Surg Neurol Int 2020; 11:178. [PMID: 32754353 PMCID: PMC7395537 DOI: 10.25259/sni_272_2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Glioblastoma with primitive neuronal components (GB/PNC) is an extremely rare type of glioblastoma characterized by presenting histological and cytogenetic features of both entities. The mixed nature of these tumors limits the imaging diagnosis and supposes a therapeutic dilemma. Case Description: We present the case of a 77-year-old female with a GB/PNC who is treated with surgery and adjuvant radiochemotherapy according to the STUPP protocol, where an abnormal uptake of 5-aminolevulinic acid (5-ALA) is evident during surgery in probable relation to the mixed nature of GB/PNC. Conclusion: GB/PNC is extremely rare tumors. Given its low prevalence, there are no studies that refer to the macroscopic characteristics of the tumor as well as evidence of the effectiveness of adjuvant treatment. Fluorescence-guided resection with 5-ALA is the surgical treatment of choice in surgery for high-grade gliomas; however, in GB/PNC, it may not be as useful since PNC may have less fluorescent marker uptake and be more dimly visualized when excited by light using the surgical microscope.
Collapse
Affiliation(s)
| | - Jesús Aguas-Valiente
- Departments of Neurosurgery, Lozano Blesa University Clinical Hospital, Av. San Juan Bosco, nº 15, Zaragoza, Spain
| | - Patricia Sota-Ochoa
- Departments of Pathology, Lozano Blesa University Clinical Hospital, Av. San Juan Bosco, nº 15, Zaragoza, Spain
| | - Juan Calatayud-Pérez
- Departments of Neurosurgery, Lozano Blesa University Clinical Hospital, Av. San Juan Bosco, nº 15, Zaragoza, Spain
| |
Collapse
|
11
|
Park SY, Cui Z, Kim B, Park G, Choi YW. Treatment with Gold Nanoparticles Using Cudrania tricuspidata Root Extract Induced Downregulation of MMP-2/-9 and PLD1 and Inhibited the Invasiveness of Human U87 Glioblastoma Cells. Int J Mol Sci 2020; 21:ijms21041282. [PMID: 32074974 PMCID: PMC7072962 DOI: 10.3390/ijms21041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to elucidate the anti-invasive effects of Cudrania tricuspidata root-gold nanoparticles (CTR-GNPs) using glioblastoma cells. We demonstrated the rapid synthesis of CTR-GNPs using UV-vis spectra. The surface morphology, crystallinity, reduction, capsulation, and stabilization of CTR-GNPs were analyzed using high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, CTR-GNPs displayed excellent photocatalytic activity as shown by the photo-degradation of methylene blue and rhodamine B. Cell migration and invasion assays with human glioblastoma cells were performed to investigate the anti-invasive effect of CTR-GNPs on U87 cells that were treated with phorbol 12-myristate 13-acetate. The results show that CTR-GNPs can significantly inhibit both basal and phorbol 12-myristate 13-acetate (PMA)-induced migration and invasion ability. Importantly, treatment with CTR-GNPs significantly decreased the levels of metalloproteinase (MMP)-2/-9 and phospholipase D1 (PLD1) and protein but not PLD2, which is involved in the modulation of migration and the invasion of glioblastoma cells. These results present a novel mechanism showing that CTR-GNPs can attenuate the migration and invasion of glioblastoma cells induced by PMA through transcriptional and translational regulation of MMP-2/-9 and PLD1. Taken together, our results suggest that CTR-GNPs might be an excellent therapeutic alternative for wide range of glioblastomas.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea;
- Correspondence: (S.Y.P.); (Y.-W.C.); Tel.: +82-515103631 (S.Y.P.); +82-553505522 (Y.-W.C.)
| | - Zhengwei Cui
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea;
| | - Beomjin Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Korea;
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan 609-735, Korea;
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Myrang 627-706, Korea;
- Correspondence: (S.Y.P.); (Y.-W.C.); Tel.: +82-515103631 (S.Y.P.); +82-553505522 (Y.-W.C.)
| |
Collapse
|
12
|
Vankipuram S, Sahoo S, Bhalla S, Srivastava C. Do Glioblastomas with Syndromic Association Have Better Prognosis? A Case of Supratentorial Glioblastoma with Embryonal Tumor Differentiation in a Child with Multiple Enchondromatosis. J Pediatr Neurosci 2019; 14:228-231. [PMID: 31908666 PMCID: PMC6935977 DOI: 10.4103/jpn.jpn_82_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/04/2019] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive cancerous neoplasm of the brain that has numerous morphological subtypes. Primitive neuroectodermal differentiation (hereafter, referred to as embryonal tumor [ET] differentiation) in GBM is one of them and is known to occur in adults. Their presentation in pediatric population is rare and can be a source of diagnostic confusion. The dual pathology leads to doubts where one could ask whether it is ET differentiation in GBM specimen or glial differentiation in ET specimen. This histological discrimination has a bearing on the treatment regimens and prognosis. We report a case of a 10-year-old boy presenting with a supratentorial GBM, isocitrate dehydrogenase wild type with ET differentiation, and multiple benign bony lesions of both extremities. He underwent surgical excision for the brain neoplasm followed by radiotherapy and has shown prolonged survival with no recurrence. In this article, we discuss prognostic factors associated with long-term survival of these tumors.
Collapse
Affiliation(s)
- Siddharth Vankipuram
- Department of Neurosurgery, Shatabdi Hospital Phase 2, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Sushant Sahoo
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shalini Bhalla
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Chittij Srivastava
- Department of Neurosurgery, Shatabdi Hospital Phase 2, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
ACT001, a novel PAI-1 inhibitor, exerts synergistic effects in combination with cisplatin by inhibiting PI3K/AKT pathway in glioma. Cell Death Dis 2019; 10:757. [PMID: 31591377 PMCID: PMC6779874 DOI: 10.1038/s41419-019-1986-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
PAI-1 plays significant roles in cancer occurrence, relapse and multidrug resistance and is highly expressed in tumours. ACT001, which is currently in phase I clinical trials for the treatment of glioblastoma (GBM). However, the detailed molecular mechanism of ACT001 is still unclear. In this study, we investigated the effects of ACT001 on glioma cell proliferation and clarified its mechanism. We discovered that PAI-1 was the direct target of ACT001 by a cellular thermal shift assay. Then, the interaction between ACT001 and PAI-1 was verified by Biacore assays, thermal stability assays and ACT001 probe assays. Furthermore, from the proteomic analysis, we found that ACT001 directly binds PAI-1 to inhibit the PI3K/AKT pathway, which induces the inhibition of glioma cell proliferation, invasion and migration. Moreover, the combination of ACT001 and cisplatin showed a synergistic effect on the inhibition of glioma in vitro and in vivo. In conclusion, our findings demonstrate that PAI-1 is a new target of ACT001, the inhibition of PAI-1 induces glioma inhibition, and ACT001 has a synergistic effect with cisplatin through the inhibition of the PAI-1/PI3K/AKT pathway.
Collapse
|