1
|
Tshilate TS, Ishengoma E, Rhode C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim Genet 2024; 55:744-760. [PMID: 38945682 DOI: 10.1111/age.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862-0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.
Collapse
Affiliation(s)
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Matieland, South Africa
- Mkwawa University College of Education, University of Dar es Salaam, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
2
|
Kamal S, Babar S, Ali W, Rehman K, Hussain A, Akash MSH. Sirtuin insights: bridging the gap between cellular processes and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03263-9. [PMID: 38976046 DOI: 10.1007/s00210-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sharon Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waqas Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | | |
Collapse
|
3
|
Li Y, Xie F, Zhang H, Wu X, Ji G, Li J, Hong L. Effects of mRNA expression of five Notch ligands on prognosis of gastric carcinoma. Sci Rep 2022; 12:15141. [PMID: 36071128 PMCID: PMC9452498 DOI: 10.1038/s41598-022-19291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Notch ligands are expression changes in a great many malignancies including gastric cancer (GC) frequently. The prognostic value of each Notch ligands in GC patients remains lack of large sample data results. In present research, we researched the prognostic value of Notch ligands in GC patients in order to fill the shortage areas. We used an online database ( http://kmplot.com/analysis/index.php?p=service&cancer=gastric ) to identify the relationship between mRNA expression of each Notch ligand and overall survival (OS) in GC. We analyze the relevance of overall survival and clinical data which includes gender, Lauren's classification, differentiation, clinical stage and treatment. The study found that high DLL1, DLL3, DLL4 and JAG2 mRNA expression were tied to worse OS in all GC patients followed up for 10 years. There is no significant relevance to the expression of JAG1 mRNA and OS in patients with GC. We also did a survey of each Notch ligands in different clinical and pathological features present different prognosis. The information will help to better understand the biology of gastric cancer heterogeneity, provide more accurate prognostic evaluation tools and provide new targets for targeted drug development besides.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Fengni Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Huimin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Gang Ji
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jipeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Liu Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
4
|
Xu J, Xu W, Yang X, Liu Z, Sun Q. LncRNA HCG11/miR-579-3p/MDM2 axis modulates malignant biological properties in pancreatic carcinoma via Notch/Hes1 signaling pathway. Aging (Albany NY) 2021; 13:16471-16484. [PMID: 34230221 PMCID: PMC8266358 DOI: 10.18632/aging.203167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increasing reports have revealed that dysregulated expression of long non-coding RNAs (lncRNAs) is involved in pancreatic carcinoma progression. This study intends to explore the function and molecular mechanism of lncRNA HLA complex group 11 (HCG11) in pancreatic carcinoma. METHODS The expression profiles of HCG11 in pancreatic carcinoma samples were detected by qPCR. Bioinformatics analysis was applied to detect the associations among HCG11/miR-579-3p/MDM2. The malignant properties of pancreatic carcinoma cells were measured by numerous biological assays. Xenograft model was exploited to detect the effect of HCG11 on tumor growth. RESULTS A significant increase of HCG11 was occurred in pancreatic carcinoma samples. Knockdown of HCG11 suppressed the progression of pancreatic carcinoma cells. Bioinformatics analysis revealed that HCG11 upregulated MDM2 expression by competitively targeting miR-579-3p. The rescue assays showed that miR-579-3p reversed cell behaviors caused by HCG11, and MDM2 reversed cell properties induced by miR-579-3p. The Notch1 intracellular domain (NICD) and Hes1 protein levels were increased by overexpression of HCG11/MDM2. The tumor growth was suppressed after depletion of HCG11, followed by suppressing Ki67, PCNA and Vimentin expression, increasing TUNEL-positive cells and E-cadherin expression. CONCLUSIONS Our observations highlighted that HCG11 contributed to the progression of pancreatic carcinoma by promoting growth and aggressiveness, and inhibiting apoptosis via miR-579-3p/MDM2/Notch/Hes1 axis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xuan Yang
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhen Liu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qinyun Sun
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Wang Y, Sun Q, Geng R, Liu H, Yuan F, Xu Y, Qi Y, Jiang H, Chen Q, Liu B. Notch intracellular domain regulates glioblastoma proliferation through the Notch1 signaling pathway. Oncol Lett 2021; 21:303. [PMID: 33732379 PMCID: PMC7905607 DOI: 10.3892/ol.2021.12564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Notch intracellular domain (NICD), also known as the activated form of Notch1 is closely associated with cell differentiation and tumor invasion. However, the role of NICD in glioblastoma (GBM) proliferation and the underlying regulatory mechanism remains unclear. The present study aimed to investigate the expression of NICD and Notch1 downstream gene HES5 in human GBM and normal brain samples and to further detect the effect of NICD on human GBM cell proliferation. For this purpose, western blotting and immunohistochemical staining were performed to analyze the expression of NICD in human GBM tissues, while western blotting and reverse-transcription quantitative PCR experiments were used to analyze the expression of Hes5 in human GBM tissues. A Flag-NICD vector was used to overexpress NICD in U87 cells and compound E and small interfering (si) Notch1 were used to downregulate NICD. Cellular proliferation curves were generated and BrdU assays performed to evaluate the proliferation of U87 cells. The results demonstrated that compared with normal brain tissues, the level of NICD protein in human GBM tissues was upregulated and the protein and mRNA levels of Hes5 were also upregulated in GBM tissues indicating that the Notch1 signaling pathway is activated in GBM. Overexpression of NICD promoted the proliferation of U87 cells in vitro while downregulation of NICD by treatment with compound E or siNotch1 suppressed the proliferation of U87 cells in vitro. In conclusion, NICD was upregulated in human GBM and NICD promoted GBM proliferation via the Notch1 signaling pathway. NICD may be a potential diagnostic marker and therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
6
|
Medina PM, Ponce JM, Cruz CA. Revealing the anticancer potential of candidate drugs in vivo using Caenorhabditis elegans mutant strains. Transl Oncol 2020; 14:100940. [PMID: 33221682 PMCID: PMC7689339 DOI: 10.1016/j.tranon.2020.100940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Wnt, Notch, and Ras-ERK signaling pathways in C. elegans lead to infertility, sterility, and multivulva formation. Phenotypic assays using C. elegans mutant strains can be used as in vivo models for drug repurposing. Itraconazole, disulfiram, etodolac, and ouabain have anticancer potential that can specifically target the Wnt, Notch, and RAS-ERK signaling pathways.
Drug repurposing is used as a strategy for finding new drugs for cancer. The process is a faster and a more cost-effective way of providing new indications for drugs that can address emerging drug resistance and numerous side effects of chemotherapeutic drugs. In this study, the in vivo anticancer potential of itraconazole, disulfiram, etodolac, and ouabain were assessed using five different C. elegans mutant strains. Each strain contains mutations in genes involved in different signaling pathways such as Wnt (JK3476), Notch (JK1107 and BS3164), and Ras-ERK (SD939 and MT2124) that result to phenotypes of sterility, infertility, and multivulva formation. These same signaling pathways have been shown to be defective in several human cancer types. The four candidate drugs were tested on the C. elegans mutant strains to determine if they rescue the mutant phenotypes. Both ouabain and etodolac significantly reduced the sterile and infertile phenotypes of JK3476, JK1107, BS3164, and SD939 strains (p=0.0010). Finally, itraconazole and etodolac significantly reduced multivulva formation (p=0.0021). The degrees of significant phenotypic rescues of each mutant were significantly higher than vehicle only (1% DMSO). Therefore, this study demonstrated that the four candidate drugs have anticancer potential in vivo, and etodolac had the highest anticancer potential.
Collapse
Affiliation(s)
- Paul Mark Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Metro Manila 1000, Philippines.
| | - Jozelle Marie Ponce
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Metro Manila 1000, Philippines
| | - Christian Alfredo Cruz
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Metro Manila 1000, Philippines
| |
Collapse
|