1
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Vecchio M, Sortino M, Musumeci G, Vinciguerra M, Di Rosa M. Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations. Metab Brain Dis 2025; 40:83. [PMID: 39754632 DOI: 10.1007/s11011-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC). Nineteen microarray datasets were analyzed, with brain samples stratified by sex and age from areas including the prefrontal cortex, occipital lobe, and cerebellum. Results showed that SERPINA3 was significantly highly expressed in AD patients compared to NDHCs only in males. Sex-specific differences were observed only in NDHCs, where females had higher SERPINA3 levels than males. ROC analysis suggested that SERPINA3 could be a strong marker for distinguishing AD in males but not females. In NDHCs, SERPINA3 expression correlated more strongly with age than in AD patients. In brain regions, SERPINA3 expression in NDHC females was higher across multiple areas, while in AD patients, this difference was limited to the prefrontal cortex. The most significant differences between NDHC and AD patients were found in the occipital and prefrontal regions. Furthermore, we identified a potential nuclear localization for SERPINA3, supported by immunohistochemistry analysis from The Human Protein Atlas. Correlation with neuropathological traits, including Clinical Dementia Rating (CDR) and Braak Neurofibrillary Tangle Score, showed positive significant associations between SERPINA3 and CDR in AD patients. Performing a docking analysis, we revealed an interaction region between SERPINA3 and CHI3L1 proteins, suggesting a potential role in AD. Tissue transcriptomic deconvolution analysis indicated a significant overlap between SERPINA3 expression and microglial/astrocytic signatures, suggesting that SERPINA3 plays a key role in modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, Catania, 95100, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University Varna, Varna, Bulgaria
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
2
|
Guttapadu R, Katte T, Sayeeram D, Bhatia S, Abraham AR, Rajeev K, Amara ARR, Siri S, Bommana K, Rasalkar AA, Malempati R, Mustak MS, Narayanan P, Reddy SDN. Identification of novel biomarkers for lung squamous cell carcinoma. 3 Biotech 2023; 13:72. [PMID: 36742449 PMCID: PMC9895444 DOI: 10.1007/s13205-023-03489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common subtype of lung cancer, accounting for a majority of lung cancer-related deaths. Detection or diagnosis of cancer at an early stage is an unmet clinical need that is being actively explored. In this study, we aimed to identify potential biomarkers for LUSC, by screening expression status of all human genes against LUSC patient samples available with The Cancer Genome Atlas (TCGA). This led to the identification of several genes that are upregulated in LUSC. Further analysis revealed that many of these genes also show higher expression at the protein level not only in lung cancer but also in other cancers. Additionally, some of these genes show stage-dependent higher expression and are associated with statistically significant poor survival of LUSC patients. As per our results, more than 60 genes are overexpressed in LUSC at the level of mRNA and some at the protein level. Thus, we identified genes such as MCC1, MRPL47, CRYGS, HSP40, DNAJC19, GMPS and PARL as novel potential biomarkers for LUSC in this study. We believe that these genes hold great potential as LUSC biomarkers for early detection as the data are derived from patient samples. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03489-z.
Collapse
Affiliation(s)
- Ranjitha Guttapadu
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Teesta Katte
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Deepak Sayeeram
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Saloni Bhatia
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Anika Rachel Abraham
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Kiran Rajeev
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Anish Raju R. Amara
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Sharadhi Siri
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Kavitha Bommana
- Department of Botany, Rayalaseema University, Kurnool, India
| | - Avinash Arvind Rasalkar
- in-DNA Life Science Pvt LtD, Plot, No. 368, Infocity Ave, Infocity, Sishu Vihar, Patia, Bhubaneswar, Odisha 751024 India
| | - Rajyalakshmi Malempati
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - Mohammed S. Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574199 India
| | - Prathibha Narayanan
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| | - S. Divijendra Natha Reddy
- Department of Biotechnology, BMS College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru, 560019 India
| |
Collapse
|
3
|
Resistin-like beta reduction is associated to low survival rate and is downregulated by adjuvant therapy in colorectal cancer patients. Sci Rep 2023; 13:1490. [PMID: 36707698 PMCID: PMC9883247 DOI: 10.1038/s41598-023-28450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Colorectal Cancer (CRC) is one of the most common cancers accounting for 1.8 million new cases worldwide every year. Therefore, the identification of new potential therapeutic targets represents a continuous challenge to improve survival and quality of CRC patient's life. We performed a microarray analysis dataset consisting of colon biopsies of healthy subjects (HS) and CRC patients. These results were further confirmed in a clinical setting evaluating a series of CRC patients to assess the expression of Resistin-Like Beta (RETNLB) and to correlate it with their clinical data. Our results showed a significant reduction of RETNLB expression in CRC biopsies compared to the HS mucosa. Furthermore, such reduction was significantly associated with the TNM grade and patients' age. Furthermore, a significantly positive correlation was found within mutated subjects for KRAS, TP53, and BRAF. In particular, patients with poor prognosis at 5 years exhibited RETNLB lower levels. In-silico analysis data were confirmed by histochemical analysis in a series of CRC patients recruited by our group. The results obtained provided that RETNLB low levels are associated with an unfavorable prognosis in CRC patients and its expression is also dependent on adjuvant therapy. Further studies are warranted in order to evaluate the molecular mechanisms underlying the role of RETNLB in CRC progression.
Collapse
|
4
|
GJA1/CX43 High Expression Levels in the Cervical Spinal Cord of ALS Patients Correlate to Microglia-Mediated Neuroinflammatory Profile. Biomedicines 2022; 10:biomedicines10092246. [PMID: 36140348 PMCID: PMC9496195 DOI: 10.3390/biomedicines10092246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motoneurons (MNs) with a fatal outcome. The typical degeneration of cortico-spinal, spinal, and bulbar MNs, observed in post-mortem biopsies, is associated with the activation of neuroimmune cells. GJA1, a member of the connexins (Cxs) gene family, encodes for connexin 43 (Cx43), a core gap junctions (GJs)- and hemichannels (HCs)-forming protein, involved in cell death, proliferation, and differentiation. Recently, Cx43 expression was found to play a role in ALS pathogenesis. Here, we used microarray and RNA-seq datasets from the NCBI of the spinal cord of control (NDC) and ALS patients, which were stratified according to the GJA1 gene expression. Genes that positively or negatively correlated to GJA1 expression were used to perform a genomic deconvolution analysis (GDA) using neuroimmune signatures. Expression analysis revealed a significantly higher GJA1 expression in the MNs of ALS patients as compared to NDC. Gene deconvolution analysis revealed that positively correlated genes were associated with microglia activation, whereas negatively correlated genes were associated with neuronal activation profiles. Moreover, gene ontology analysis, performed on genes characterizing either microglia or neuronal signature, indicated immune activation or neurogenesis as main biological processes. Finally, using a synthetic analysis of drugs able to revert the GJA1 transcriptomic signatures, we found a specific drug profile for ALS patients with high GJA1 expression levels, composed of amlodipine, sertraline, and prednisolone. In conclusion, our exploratory study suggests GJA1 as a new neuro-immunological gene correlated to microglial cellular profile in the spinal cord of ALS patients. Further studies are warranted to confirm these results and to evaluate the therapeutic potential of drugs able to revert typical GJA1/CX43 signature in ALS patients
Collapse
|
5
|
Longhitano L, Vicario N, Tibullo D, Giallongo C, Broggi G, Caltabiano R, Barbagallo GMV, Altieri R, Baghini M, Di Rosa M, Parenti R, Giordano A, Mione MC, Li Volti G. Lactate Induces the Expressions of MCT1 and HCAR1 to Promote Tumor Growth and Progression in Glioblastoma. Front Oncol 2022; 12:871798. [PMID: 35574309 PMCID: PMC9097945 DOI: 10.3389/fonc.2022.871798] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in establishing malignancy, and it is associated with high glycolytic metabolism and lactate release through monocarboxylate transporters (MCTs). Several lines of evidence suggest that lactate also serves as a signaling molecule through its receptor hydroxycarboxylic acid receptor 1 (HCAR1/GPR81), thus functioning as a paracrine and autocrine signaling molecule. The aim of the present study was to investigate the role of lactate in glioblastoma (GBM) progression and metabolic reprogramming in an in vitro and in vivo model. The cell proliferation, migration, and clonogenicity were tested in vitro in three different human GBM cell lines. The expressions of MCT1, MCT4, and HCAR1 were evaluated both in vitro and in a zebrafish GBM model. The results were further validated in patient-derived GBM biopsies. Our results showed that lactate significantly increased the cell proliferation, migration, and colony formation capacity of GBM cells, both in vitro and in vivo. We also showed that lactate increased the expressions of MCT1 and HCAR1. Moreover, lactate modulated the epithelial-mesenchymal transition protein markers E-cadherin and β-catenin. Interestingly, lactate induced mitochondrial mass and the OXPHOS gene, suggesting improved mitochondrial fitness. Similar effects were observed after treatment with 3,5-dihydroxybenzoic acid, a known agonist of HCAR1. Consistently, the GBM zebrafish model exhibited an altered metabolism and increased expressions of MCT1 and HCAR1, leading to high levels of extracellular lactate and, thus, supporting tumor cell proliferation. Our data from human GBM biopsies also showed that, in high proliferative GBM biopsies, Ki67-positive cells expressed significantly higher levels of MCT1 compared to low proliferative GBM cells. In conclusion, our data suggest that lactate and its transporter and receptor play a major role in GBM proliferation and migration, thus representing a potential target for new therapeutic strategies to counteract tumor progression and recurrence.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Neurological Surgery, Policlinico “G. Rodolico-San Marco” University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Marta Baghini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Maria Caterina Mione
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
7
|
Brain CHID1 Expression Correlates with NRGN and CALB1 in Healthy Subjects and AD Patients. Cells 2021; 10:cells10040882. [PMID: 33924468 PMCID: PMC8069241 DOI: 10.3390/cells10040882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is a progressive, devastating, and irreversible brain disorder that, day by day, destroys memory skills and social behavior. Despite this, the number of known genes suitable for discriminating between AD patients is insufficient. Among the genes potentially involved in the development of AD, there are the chitinase-like proteins (CLPs) CHI3L1, CHI3L2, and CHID1. The genes of the first two have been extensively investigated while, on the contrary, little information is available on CHID1. In this manuscript, we conducted transcriptome meta-analysis on an extensive sample of brains of healthy control subjects (n = 1849) (NDHC) and brains of AD patients (n = 1170) in order to demonstrate CHID1 involvement. Our analysis revealed an inverse correlation between the brain CHID1 expression levels and the age of NDHC subjects. Significant differences were highlighted comparing CHID1 expression of NDHC subjects and AD patients. Exclusive in AD patients, the CHID1 expression levels were correlated positively to calcium-binding adapter molecule 1 (IBA1) levels. Furthermore, both in NDHC and in AD patient’s brains, the CHID1 expression levels were directly correlated with calbindin 1 (CALB1) and neurogranin (NRGN). According to brain regions, correlation differences were shown between the expression levels of CHID1 in prefrontal, frontal, occipital, cerebellum, temporal, and limbic system. Sex-related differences were only highlighted in NDHC. CHID1 represents a new chitinase potentially involved in the principal processes underlying Alzheimer’s disease.
Collapse
|
8
|
Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021; 9:634690. [PMID: 33748119 PMCID: PMC7970050 DOI: 10.3389/fcell.2021.634690] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-Han Lin
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jia-Qi Shan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing-Wei Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rui-Xuan Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lv-Shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
9
|
Sanfilippo C, Musumeci G, Kazakova M, Mazzone V, Castrogiovanni P, Imbesi R, Di Rosa M. GNG13 Is a Potential Marker of the State of Health of Alzheimer's Disease Patients' Cerebellum. J Mol Neurosci 2020; 71:1046-1060. [PMID: 33057964 DOI: 10.1007/s12031-020-01726-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Brain regions such as the cerebellum (CB) have been neglected for a long time in the study of Alzheimer's disease (AD) pathogenesis. In reference to a new emerging hypothesis according to which there is an altered cerebellar synaptic processing in AD, we verified the possible role played by new biomarkers in the CB of AD patients compared with not-demented healthy control subjects (NDHS). Using a bioinformatics approach, we have collected several microarray datasets and obtained 626 cerebella sample biopsies belonging to subjects who did not die from causes related to neurological diseases and 199 cerebella belonging to AD. The analysis of logical relations between the transcriptome dataset highlighted guanine nucleotide-binding protein (G protein) gamma 13 (GNG13) as a potential new biomarker for Purkinje cells (PCs). We have correlated GNG13 expression levels with already widely existing bibliography of PC marker genes, such as Purkinje cell protein 2 (PCP2), Purkinje cell protein 4 (PCP4), and cerebellin 3 (CBLN3). We showed that expression levels of GNG13 and PCP2, PCP4, and CBLN3 were significantly correlated with each other in NDHS and in AD and significantly reduced in AD patients compared with NDHS subjects. In addition, we highlighted a negative correlation between the expression levels of PC biomarkers and age. From the outcome of our investigation, it is possible to conclude that the identification of GNG13 as a potentially biomarker in PCs represents also a state of health of CB, in association with the expression of PCP2, PCP4, and CBLN3.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124, Messina, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Maria Kazakova
- Department of Medical Biology, Medical Faculty, Medical University, Plovdiv, Bulgaria
| | - Venera Mazzone
- Department G.F. Ingrassia, Anatomy, School of Medicine, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|