1
|
Yu S, Wang M, Zhang H, Guo X, Qin R. Resistance to gemcitabine is mediated by the circ_0036627/miR-145/S100A16 axis in pancreatic cancer. J Cell Mol Med 2024; 28:e18444. [PMID: 38924205 PMCID: PMC11196374 DOI: 10.1111/jcmm.18444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
The development of gemcitabine (GEM) resistance severely limits the treatment efficacy in pancreatic cancer (PC) and increasing evidence highlights the vital roles of circular RNAs (circRNAs) in the tumorigenesis, progression and drug resistance of PC. However, the circRNAs underlying GEM resistance development of PC remains to be clarified. The current research aims to unveil the roles of circ_0036627 in dictating the aggressiveness and GEM sensitivity in PC. We reported the increased expression of circ_0036627 in PC tissues and PC cell lines. Elevated circ_0036627 expression level was correlated with advanced tumour grade and poor overall survival in PC patients. Functional assays and in vivo experiments demonstrated that circ_0036627 overexpression was required for the proliferation, migration invasion and GEM resistance in PC cells. circ_0036627 knockdown suppressed tumour development in vivo. The molecular analysis further showed that circ_0036627 increased S100A16 expression by sponging microRNA-145 (miR-145), a tumour-suppressive miRNA that could significantly attenuate PC cell proliferation, migration, invasion and GEM resistance. Furthermore, our findings suggested that S100A16 acted as an oncogenic factor to promote aggressiveness and GEM resistance in PC cells. In conclusion, the current findings provide new mechanistic insights into PC aggressiveness and GEM resistance, suggesting the critical role of circ_0036627/miR-145/S100A16 axis in PC progression and drug resistance development and offering novel therapeutic targets for PC therapy.
Collapse
Affiliation(s)
- Shuo Yu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Min Wang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hang Zhang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xingjun Guo
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Renyi Qin
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
2
|
Zhang L, Chi W, Wang X, Li J, Li F, Ma Y, Zhang Q. The role of miR-6884-5p in epithelial-mesenchymal transition in non-small cell lung cancer. Aging (Albany NY) 2024; 16:1968-1979. [PMID: 38271114 PMCID: PMC10866446 DOI: 10.18632/aging.205474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
Significant progress has been made in the management of non-small cell lung cancer (NSCLC), though a big barrier remains, which is epithelial-mesenchymal transition (EMT). Our study aimed to evaluate the function of miR-6884-5p and S100A16 in EMT-aggravated NSCLC. The tumor tissues and adjacent tissues from 92 NSCLC patients were collected to analyze the expression of miR-6884-5p and S100A16. Then lung cancer cell line A549 was co-transfected with miR-6884-5p mimics and S100A16 to further evaluate their function. Compared to adjacent tissues, low expression of miR-6884-5p was observed in the NSCLC tissues and associated with severe NSCLC progression. MiR-6884-5p expression was negatively correlated with EMT in NSCLC. Luciferase assay data revealed that miR-6884-5p could directly bind to the 3'UTR of S100A16 and inhibited the expression of S100A16 in A549 cells. Moreover, miR-6884-5p mimics significantly ameliorated EMT progression, and overexpression of S100A16 could reverse the inhibitory effect of miR-6884-5p in A549 cells. MiR-6884-5p inhibited EMT through directly targeting S100A16 in NSCLC. Our findings suggest that miR-6884-5p could be a diagnostic marker of NSCLC, as well as a potential candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Lianyong Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Wei Chi
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Xue Wang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Jingjing Li
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Fei Li
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Yuxia Ma
- Department of Geriatrics, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Qianyun Zhang
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| |
Collapse
|
3
|
Zhang H, Yang Y, Xing W, Li Y, Zhang S. Expression and gene regulatory network of S100A16 protein in cervical cancer cells based on data mining. BMC Cancer 2023; 23:1124. [PMID: 37978469 PMCID: PMC10656989 DOI: 10.1186/s12885-023-11574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
S100A16 protein belongs to the S100 family of calcium-binding proteins, which is widely distributed in human tissues and highly conserved. S100 calcium-binding proteins possess broad biological functions, such as cancer cell proliferation, apoptosis, tumor metastasis, and inflammation (Nat Rev Cancer 15:96-109, 2015). The S100A16 protein was initially isolated from a cell line derived from astrocytoma. The S100A16 protein, consisting of 103 amino acids, is a small acidic protein with a molecular weight of 11,801.4 Da and an isoelectric point (pI) of 6.28 (Biochem Biophys Res Commun 313:237-244, 2004). This protein exhibits high conservation among mammals and is widely expressed in various human tissues (Biochem Biophys Res Commun 322:1111-1122, 2004). Like other S100 proteins, S100A16 contains two EF-hand motifs that form a helix-loop-helix structural domain. The N-terminal domain and the C-terminal domain of S100A16 are connected by a "hinge" linker.S100A16 protein exhibits distinct characteristics that distinguish it from other S100 proteins. A notable feature is the presence of a single functional Ca2 + binding site located in the C-terminal EF-hand, consisting of 12 amino acids per protein monomer (J Biol Chem 281:38905-38917, 2006). In contrast, the N-terminal EF-hand of S100A16 comprises 15 amino acids instead of the typical 14, and it lacks the conserved glutamate residue at the final position. This unique attribute may contribute to the impaired Ca2 + binding capability in the N-terminal region (J Biol Chem 281:38905-38917, 2006). Studies have shown an integral role of S100 calcium-binding proteins in the diagnosis, treatment, and prognosis of certain diseases (Cancers 12:2037, 2020). Abnormal expression of S100A16 protein is implicated in the progression of breast and prostate cancer, but an inhibitor of oral cancer and acute lymphoblastic leukemia tumor cell proliferation (BMC Cancer 15:53, 2015; BMC Cancer 15:631, 2015). Tu et al. (Front Cell Dev Biol 9:645641, 2021) indicate that the overexpression of S100A16 mRNA in cervical cancer(CC) such as cervical squamous cell carcinoma and endocervical adenocarcinoma as compared to the control specimens. Tomiyama N. and co-workers (Oncol Lett 15:9929-9933, 2018) (Tomiyama, N) investigated the role of S100A16 in cancer stem cells using Yumoto cells (a CC cell line),The authors found upregulation of S100A16 in Yumoto cells following sphere formation as compared to monolayer culture.Despite a certain degree of understanding, the exact biological function of S100A16 in CC is still unclear. This article explores the role of S100A16 in CC through a bioinformatics analysis. Referencing the mRNA expression and SNP data of cervical cancer available through The Cancer Genome Atlas (TCGA) database, we analyzed S100A16 and its associated regulatory gene expression network in cervical cancer. We further screened genes co-expressed with S100A16 to hypothesize their function and relationship to the S100A16 cervical cancer phenotype.Our results showed that data mining can effectively elucidate the expression and gene regulatory network of S100A16 in cervical cancer, laying the foundation for further investigations into S100A16 cervical tumorigenesis.
Collapse
Affiliation(s)
- Haibin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730013, Gansu Province, China
- Department of Gynecology, the Second Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
- The Key Laboratory of Gynecological Tumors in Gansu Province, Lanzhou, 730013, Gansu Province, China
| | - Yongxiu Yang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730013, Gansu Province, China.
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China.
- The Key Laboratory of Gynecological Tumors in Gansu Province, Lanzhou, 730013, Gansu Province, China.
| | - Wenhu Xing
- Department of Gynecology, the Second Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
| | - Yufeng Li
- Department of Gynecology, the Second Hospital of Lanzhou University, Lanzhou, 730013, Gansu Province, China
| | - Shan Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou, 730013, Gansu Province, China
| |
Collapse
|
4
|
Higuchi S, Suehiro Y, Izuhara L, Yoshina S, Hirasawa A, Mitani S. BCL7B, a SWI/SNF complex subunit, orchestrates cancer immunity and stemness. BMC Cancer 2023; 23:811. [PMID: 37648998 PMCID: PMC10466690 DOI: 10.1186/s12885-023-11321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
Cancer is one of the main causes of human death. Here, we focus on the B-cell lymphoma 7 protein family member B (BCL7B) gene, an accessory subunit of the SWI/SNF chromatin-remodelling complex. To characterize the function of BCL7B, heterozygous BCL7B-deficient stomach cancer cell lines were generated with the CRISPR/Cas9 genome editing system. The comprehensive gene expression patterns were compared between parental cells and each ΔBCL7B cell line by RNA-seq. The results showed marked downregulation of immune-related genes and upregulation of stemness-related genes in the ΔBCL7B cell lines. Moreover, by ChIP-seq analysis with H3K27me3 antibody, the changes of epigenetic modification sequences were compared between parental cells and each ΔBCL7B cell line. After machine learning, we detected the centroid sequence changes, which exerted an impact on antigen presentation. The regulation of BCL7B expression in cancer cells gives rise to cancer stem cell-like characteristics and the acquisition of an immune evasion phenotype.
Collapse
Affiliation(s)
- Sayaka Higuchi
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan
| | - Luna Izuhara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan
| | - Akira Hirasawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Shohei Mitani
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan.
| |
Collapse
|
5
|
Alghamdi MA, AL-Eitan LN, Tarkhan AH. Integrative analysis of gene expression and DNA methylation to identify biomarkers of non-genital warts induced by low-risk human papillomaviruses infection. Heliyon 2023; 9:e16101. [PMID: 37215908 PMCID: PMC10196596 DOI: 10.1016/j.heliyon.2023.e16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Background Human papillomaviruses have been shown to dysregulate the gene expression and DNA methylation profiles of their host cells over the course of infection. However, there is a lack of information on the impact of low-risk HPV infection and wart formation on host cell's expression and methylation patterns. Therefore, the objective of this study is to analyse the genome and methylome of common warts using an integrative approach. Methods In the present study, gene expression (GSE136347) and methylation (GSE213888) datasets of common warts were obtained from the GEO database. Identification of the differentially expressed and differentially methylated genes was carried out using the RnBeads R package and the edgeR Bioconductor package. Next, functional annotation of the identified genes was obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Network construction and analyses of the gene-gene, protein-protein, and signaling interactions of the differentially expressed and differentially methylated genes was performed using the GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. Results A total of 276 genes were identified as differentially expressed and differentially methylated in common warts, with 52% being upregulated and hypermethylated. Functional enrichment analysis identified extracellular components as the most enriched annotations, while network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as significant hub genes. Conclusions To the best knowledge of the authors, this is the first integrative study to be carried out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate the findings in larger populations using alternative approaches.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
6
|
Ma L, Li G, Yang T, Zhang L, Wang X, Xu X, Ni H. An inhibitor of BRD4, GNE987, inhibits the growth of glioblastoma cells by targeting C-Myc and S100A16. Cancer Chemother Pharmacol 2022; 90:431-444. [PMID: 36224471 PMCID: PMC9637061 DOI: 10.1007/s00280-022-04483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Among children, glioblastomas (GBMs) are a relatively common type of brain tumor. BRD4 expression was elevated in GBM and negatively correlated with the prognosis of glioma. We investigated the anti-GBM effects of a novel BRD4 inhibitor GNE987. METHODS We evaluated the anti-tumor effect of GNE987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, the size of xenografts, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In vitro experiments showed that GNE987 significantly degraded BRD4, inhibited the proliferation of GBM cells, blocked the cell cycle, and induced apoptosis. Similarly, in vivo experiments, GNE987 also inhibited GBM growth as seen from the size of xenografts and Ki67 immunohistochemical staining. Based on Western blotting, GNE987 can significantly reduce the protein level of C-Myc; meanwhile, we combined ChIP-seq with RNA-seq techniques to confirm that GNE987 downregulated the transcription of S100A16 by disturbing H3K27Ac. Furthermore, we validated that S100A16 is indispensable in GBM growth. CONCLUSION GNE987 may be effective against GBM that targets C-Myc expression and influences S100A16 transcription through downregulation of BRD4.
Collapse
Affiliation(s)
- Liya Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
- Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Li Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xiaowen Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Hong Ni
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
7
|
Lim JR, Mouawad J, Gorton OK, Bubb WA, Kwan AH. Cancer stem cell characteristics and their potential as therapeutic targets. Med Oncol 2021; 38:76. [PMID: 34050825 DOI: 10.1007/s12032-021-01524-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a tumour subpopulation whose capacity for self-renewal, differentiation and proliferation generates unfavourable patient outcomes, including therapeutic resistance and metastasis. Much research has focused on the generation, biomarkers and therapeutic resistance of CSCs, as well as the development of CSC-targeted therapies. Reviews to date have either addressed general CSC characteristics or focused on CSCs from a well-studied cancer. Increasingly, specific treatment plans based on identification of molecular features and biomarkers of a patient's cancer, rather than classification according to tissue origin or bulk tumour properties, are leading to better patient outcomes. Here, we compare CSC characteristics, specifically their biomarkers and molecular features, and identify those that are common to a number of cancers. Identification of CSC markers that suggest therapeutic strategies has led to several successful in vitro and animal tests, recommending clinical trials of treatments with potentially enhanced therapeutic benefits, especially for recurring cancers.
Collapse
Affiliation(s)
| | | | | | | | - Ann H Kwan
- The University of Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Fang D, Zhang C, Xu P, Liu Y, Mo X, Sun Q, Abdelatty A, Hu C, Xu H, Zhou G, Xia H, Lan L. S100A16 promotes metastasis and progression of pancreatic cancer through FGF19-mediated AKT and ERK1/2 pathways. Cell Biol Toxicol 2021; 37:555-571. [PMID: 33389337 DOI: 10.1007/s10565-020-09574-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
The S100 protein family genes play a crucial role in multiple stages of tumorigenesis and progression. Most of S100 genes are located at chromosome locus 1q21, which is a region frequently rearranged in cancers. Here, we examined the expression of the S100 family genes in paired pancreatic ductal adenocarcinoma (PDAC) samples and further validated the expression of S100A16 by immunohistochemistry staining. We found that S100A16 is significantly upregulated in clinical PDAC samples. However, its roles in PDAC are still unclear. We next demonstrated that S100A16 promotes PDAC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Knockdown of S100A16 induces PDAC cell cycle arrest in the G2/M phase and apoptosis. Furthermore, we also demonstrated that S100A16 promotes PDAC cell proliferation, migration, and invasion via AKT and ERK1/2 signaling in a fibroblast growth factor 19 (FGF19)-dependent manner. Taken together, our results reveal that S100A16 is overexpressed in PDAC and promotes PDAC progression through FGF19-mediated AKT and ERK1/2 signaling, suggesting that S100A16 may be a promising therapeutic target for PDAC. S100A16 was upregulated in PDAC and associated with prognosis of PDAC patients. S100A16 regulates apoptosis and the cell cycle of pancreatic cancer cells. S100A16 promotes the progression of pancreatic cancer by AKT-ERK1/2 signaling. S100A16 may be a promising therapeutic target for PDAC.
Collapse
Affiliation(s)
- Dan Fang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Chengfei Zhang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Ping Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Yinhua Liu
- Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241002, China
| | - Xiao Mo
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Sun
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Alaa Abdelatty
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Hu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Haojun Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 2100092, Nanjing, China.
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
- Department of Pathology, The First Affiliated Yijishan Hospital of Wannan Medical College & Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241002, China.
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, 2100092, Nanjing, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Advancing the Role of Gamma-Tocotrienol as Proteasomes Inhibitor: A Quantitative Proteomic Analysis of MDA-MB-231 Human Breast Cancer Cells. Biomolecules 2019; 10:biom10010019. [PMID: 31877708 PMCID: PMC7022772 DOI: 10.3390/biom10010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/24/2022] Open
Abstract
Tocotrienol, an analogue of vitamin E has been known for its numerous health benefits and anti-cancer effects. Of the four isoforms of tocotrienols, gamma-tocotrienol (γT3) has been frequently reported for their superior anti-tumorigenic activity in both in vitro and in vivo studies, when compared to its counterparts. In this study, the effect of γT3 treatment in the cytoplasmic and nuclear fraction of MDA-MB-231 human breast cancer cells were assessed using the label-free quantitative proteomics analysis. The cytoplasmic proteome results revealed the ability of γT3 to inhibit a group of proteasome proteins such as PSMA, PSMB, PSMD, and PSME. The inhibition of proteasome proteins is known to induce apoptosis in cancer cells. As such, the findings from this study suggest γT3 as a potential proteasome inhibitor that can overcome deficiencies in growth-inhibitory or pro-apoptotic molecules in breast cancer cells. The nuclear proteome results revealed the involvement of important nuclear protein complexes which hardwire the anti-tumorigenesis mechanism in breast cancer following γT3 treatment. In conclusion, this study uncovered the advancing roles of γT3 as potential proteasomes inhibitor that can be used for the treatment of breast cancer.
Collapse
|
10
|
Zhang C, Shen K, Zheng Y, Qi F, Luo J. Genome-wide screening of abberant methylated drivers combined with relative risk loci in bladder cancer. Cancer Med 2019; 9:768-782. [PMID: 31794632 PMCID: PMC6970050 DOI: 10.1002/cam4.2665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Background To explore important methylation‐driven genes (MDGs) and risk loci to construct risk model for prognosis of bladder cancer (BCa). Methods We utilized TCGA‐Assembler package to download 450K methylation data and corresponding transcriptome profiles. MethylMix package was used for identifying methylation‐driven genes and functional analysis was mainly performed based on ConsensusPathDB database. Then, Cox regression method was utilized to find prognostic MDGs, and we selected 17 hub genes via stepwise regression and multivariate Cox models. Kruskal‐Wallis test was implemented for comparisons between risk with other clinical variables. Moreover, we constructed the risk model and validated it in http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507. Gene set enrichment analysis was performed using the levels of risk score as the phenotype. Additionally, we further screened out the relative methylation sites associated with the 17 hub genes. Cox regression and Survival analysis were conducted to find the specifically prognostic sites. Results Two hundred and twenty‐eight MDGs were chosen by ConsensusPathDB database. Results revealed that most conspicuous pathways were transcriptional mis‐regulation pathways in cancer and EMT. After Cox regression analysis, 17 hub epigenetic MDGs were identified. We calculated the risk score and found satisfactory predictive efficiency by ROC curve (AUC = 0.762). In the validation group from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507, 17 hub genes remained higher predictive value with AUC = 0.723 and patients in high‐risk group. Meanwhile, Kruskal‐Wallis test revealed that higher risk score correlated with a higher level of TNM stage, tumor grade, and advanced pathological stages. Then, identified 38 risk methylated loci that highly associated with prognosis. Last, gene set enrichment analysis revealed that high‐risk level of MDGs may correlate with several important pathways, including MAPK signaling pathway and so on. Conclusion Our study indicated several hub‐MDGs, calculated novel risk score and explored the prognostic value in BCa, which provided a promising approach to BCA prognosis assessment.
Collapse
Affiliation(s)
- Chuanjie Zhang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kangjie Shen
- First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Luo
- Department of Urology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Lv H, Hou H, Lei H, Nie C, Chen B, Bie L, Han L, Chen X. MicroRNA-6884-5p Regulates the Proliferation, Invasion, and EMT of Gastric Cancer Cells by Directly Targeting S100A16. Oncol Res 2019; 28:225-236. [PMID: 31796150 PMCID: PMC7851531 DOI: 10.3727/096504019x15753718797664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
S100 binding protein A16 (S100A16) expression levels are closely associated with microRNA (miRNA) processing. Higher levels of S100A16 are reported during the progression of many cancers. Our study mainly explored the interaction between S100A16 and miR-6884-5p in gastric cancer (GC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the level of S100A16 and miR-6884-5p in GC tissues and cell lines. The si-S100A16, pcDNA-S100A16, miR-6884-5p mimic or inhibitor was transfected into GC cells, and the effects of S100A16 and miR-6884-5p on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) were explored by qRT-PCR and Western blot assays. Luciferase assays were performed to validate S100A16 as an miR-6884-5p target in GC cells. In our study, we found that the level of miR-6884-5p was significantly decreased and the expression of S100A16 was significantly increased in GC tissues and cell lines. There was a close association between these changes. Knockdown of S100A16 significantly inhibited the proliferation, invasion, and EMT of GC cells. The bioinformatics analysis predicted that S100A16 is a potential target gene of miR-6884-5p, and the luciferase reporter assay confirmed that miR-6884-5p could directly target S100A16. Introduction of miR-6884-5p to GC cells had similar effects to S100A16 silencing. Overexpression of S100A16 in GC cells partially reversed the inhibitory effects of the miR-6884-5p mimic. miR-6884-5p inhibited the proliferation, invasion, and EMT of GC cells by directly decreasing S100A16 expression.
Collapse
Affiliation(s)
- Huifang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Honglin Hou
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Huijun Lei
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Caiyun Nie
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Beibei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Liangyu Bie
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Lili Han
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouChina
| |
Collapse
|