1
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Pan J, Yin W, Chen Y, Wang H, Wu W, Wang S, Li D, Ma Q. Sustained Response to Anti-PD-1 Therapy in Combination with Nab-Paclitaxel in Metastatic Testicular Germ Cell Tumor Harboring the KRAS-G12V Mutation: A Case Report. Urol Int 2024:1-9. [PMID: 39362200 DOI: 10.1159/000541588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Cisplatin-based standardized therapy has been established for metastatic testicular germ cell tumors (TGCTs). However, the patient prognosis is considerably less favorable if the disease recurs following failure of first-line therapies. There is a need for novel treatment options for patients with recurrent or metastatic TGCTs, notably for those that are not sensitive to first-line chemotherapy. With the development of next-generation sequencing technologies, an increasing number of gene mutations has been identified in TGCTs. Previously published research studies have established a link between KRAS mutations and chemotherapy resistance, and have demonstrated that KRAS mutations are associated with inflammatory tumor microenvironment and tumor immunogenicity, leading to an improved response to inhibition of programmed death (PD-1) protein expression. Previous studies have reported that the tumor immune microenvironment of TGCT influences therapeutic efficacy. CASE PRESENTATION A 65-year-old metastatic patient with TGCT and a KRAS-12 valine-for-glycine gene mutation was described. This patient initially underwent inguinal orchiectomy and received two prior chemotherapeutic regimens. Following the rapid progression of the disease, the patient was treated with anti-PD-1 therapy and nab-paclitaxel chemotherapy, and his condition was successfully controlled by this combination treatment. CONCLUSION To the best of our knowledge, this is the first successful case of KRAS-mutation patient with TGCT who achieved partially and sustained disease remission by combining immune checkpoint inhibitors with chemotherapy. This case provides an excellent example for personalized treatment of metastatic TGCTs.
Collapse
Affiliation(s)
- Jinfeng Pan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weiqi Yin
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yingzhi Chen
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hui Wang
- Department of Medical Oncology, Zhejiang University Mingzhou Hospital, Ningbo, China
| | - Wei Wu
- Department of Medical Oncology, Zhejiang University Mingzhou Hospital, Ningbo, China
| | - Suying Wang
- Department of Tissue Pathology, Ningbo Clinical Pathological Diagnosis Center, Ningbo, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University Medical School, Hangzhou, China
| | - Qi Ma
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Clinical Research Center for Urological Disease, Ningbo, China
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Yi-Huan Genitourinary Cancer Group, Ningbo, China
| |
Collapse
|
3
|
Li P, Zhong Y, Zhang M, Zheng Y, Peng W. The expression of programmed cell death ligand 1 (PD-L1) involves in the clinicopathologic characteristics and prognostic implications of testicular germ cell tumor (TGCT): a systematic review and meta-analysis. Transl Cancer Res 2024; 13:3944-3959. [PMID: 39262473 PMCID: PMC11385796 DOI: 10.21037/tcr-23-2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background Testicular germ cell tumor (TGCT) is a type of tumor with relatively lower incidence but being more prevalent in young men. The expression of programmed cell death ligand 1 (PD-L1) serves as a potential biomarker for predicting the survival outcomes of other tumors. Some studies discovered higher prevalence of PD-L1 in TGCT patients who achieved favorable treatment outcomes, while other studies showed lower or absent expression of PD-L1 in TGCT with the better prognosis as well. Therefore, in order to address this controversy and clarify the association between the expression of PD-L1 and pathological features and prognosis of TGCT, this meta-analysis was conducted. Methods A comprehensive literature search was performed using following search terms: "testis", "testicle", "testicular", "cancer", "carcinoma", "tumor", "neoplasm", "programmed cell death ligand 1", "programmed death ligand 1", "PD-L1", "PDL1", "B7 homolog 1", "B7-H1", "B7H1" and "CD274". Relevant studies were retrieved according to the inclusion criteria from reputable databases including PubMed, Embase, Web of Science, Cochrane Library and China National Knowledge Infrastructure (CNKI). These studies investigated the expression of PD-L1 in both tumor cells and tumor infiltrating immune cells (TIICs) in TGCT. The overall proportion of PD-L1 positivity was assessed using R programming. Pooled hazard ratio (HR) and odds ratio (OR) with corresponding 95% confidence interval (CI) were calculated using Revman software to evaluate the involvement of PD-L1 expression in TGCT. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality assessment of included studies. Sensitivity analysis and publication bias evaluation were subsequently performed. Results A total of eight eligible studies compromising 1,589 patients diagnosed with TGCT were finally included in this study. PD-L1 positivity was detected in 31% and 41% of TGCT patients' tumor cells and TIICs, respectively. The pooled data demonstrated a significant association between elevated PD-L1 expression levels in TIICs and a favorable prognosis characterized by the reduced disease progression and relapse events (HR =0.21, 95% CI: 0.13-0.33). Furthermore, PD-L1+ TIICs exhibited higher prevalence rates in seminoma (OR =2.11, 95% CI: 1.57-2.84) and embryonal carcinoma (OR =6.23, 95% CI: 2.42-16.02) patients. Notably, PD-L1 expression in TIICs displayed a tendency to increase in TGCT patients with lower stages or without lymph node metastasis. Conclusions PD-L1 expression was observed in choriocarcinoma tumor cells, while yolk sac tumor and teratoma tumor cells exhibited lower or absent expression of PD-L1. Conversely, PD-L1 expression in TIICs was associated with seminoma and embryonal carcinoma, which was more commonly observed in TGCT patients with lower stages and better prognosis, thereby providing a theoretical foundation for the application of immunotherapy in relapsed/refractory TGCT patients.
Collapse
Affiliation(s)
- Peifeng Li
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yuwei Zhong
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Miaotao Zhang
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yonghong Zheng
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Wei Peng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| |
Collapse
|
4
|
Han L, Meng Y, Jianguo Z. Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Curr Cancer Drug Targets 2024; 24:1104-1115. [PMID: 38318829 DOI: 10.2174/0115680096278251240108152600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer significant advantages for the treatment of urologic tumors, enhancing the immune function of anti-tumor T cells by inhibiting PD-1 and PDL1 binding. They have been shown to be well tolerated and remarkably effective in clinical practice, offering hope to many patients who are not well treated with conventional drugs. Clinical trials in recent years have shown that anti-PD-1 and PD-L1 antibodies have good efficacy and safety in the treatment of urologic tumors. These antibodies can be applied to a variety of urologic tumors, such as bladder cancer, renal cell carcinoma, and prostate cancer. They have been approved for the first-line treatment or as an option for follow-up therapy. By blocking the PD-1/PD-L1 signaling pathway, ICIs can release immune functions that are suppressed by tumor cells and enhance T-cell killing, thereby inhibiting tumor growth and metastasis. This therapeutic approach has achieved encouraging efficacy and improved survival for many patients. Although ICIs have shown remarkable results in the treatment of urologic tumors, some problems remain, such as drug resistance and adverse effects in some patients. Therefore, further studies remain important to optimize treatment strategies and improve clinical response in patients. In conclusion, PD-1/PD-L1 signaling pathway blockers have important research advances for the treatment of urologic tumors. Their emergence brings new hope for patients who have poor outcomes with traditional drug therapy and provides new options for immunotherapy of urologic tumors. The purpose of this article is to review the research progress of PD-1 and PD-L1 signaling pathway blockers in urologic tumors in recent years.
Collapse
Affiliation(s)
- Lv Han
- Guizhou Medical University, Guiyang, 550000, China
| | - Yang Meng
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Zhu Jianguo
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| |
Collapse
|
5
|
Savelyeva AV, Medvedev KE. Seminoma subtypes differ in the organization and functional state of the immune microenvironment. 3 Biotech 2023; 13:110. [PMID: 36875959 PMCID: PMC9981831 DOI: 10.1007/s13205-023-03530-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Seminoma is the most common type of testicular germ cell tumors (TGCTs) among 15-44 years old men. Seminoma treatments include orchiectomy, platinum-based chemotherapy and radiotherapy. These radical treatment methods cause up to 40 severe adverse long-term side effects including secondary cancers. Immunotherapy based on immune checkpoint inhibitors, which showed its efficiency for many types of cancer, can be important alternative to the platinum-based therapy for seminoma patients. However, five independent clinical trials evaluating the efficiency of immune checkpoint inhibitors for TGCTs treatment were shut down at the phase II due to lacking clinical efficacy and detailed mechanisms of this phenomena are yet to be discovered. Recently we identified two distinct seminoma subtypes based on transcriptomic data and here we focused on the analysis of seminoma microenvironment and its subtype-specific characteristics. Our analysis revealed that less differentiated subtype 1 of seminoma has immune microenvironment with significantly lower immune score and larger fraction of neutrophils. Both are features of the immune microenvironment at an early developmental stage. On the contrary, subtype 2 seminoma is characterized by the higher immune score and overexpression of 21 genes related to senescence-associated secretory phenotype. Seminoma single cell transcriptomic data showed that 9 out of 21 genes are predominantly expressed in immune cells. Therefore, we hypothesized that senescence of immune microenvironment can be one of the reasons for seminoma immunotherapy failure. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03530-1.
Collapse
Affiliation(s)
- Anna V. Savelyeva
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kirill E. Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
6
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
7
|
Testicular Germ Cell Tumours and Proprotein Convertases. Cancers (Basel) 2022; 14:cancers14071633. [PMID: 35406405 PMCID: PMC8996948 DOI: 10.3390/cancers14071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite the high survival rate of the most common neoplasia in young Caucasian men: Testicular Germ Cell Tumors (TGCT), the quality of life of these patients is impaired by the multiple long-term side effects of their treatment. The study of molecules that can serve both as diagnostic biomarkers for tumor development and as therapeutic targets seems necessary. Proprotein convertases (PC) are a group of proteases responsible for the maturation of inactive proproteins with very diverse functions, whose alterations in expression have been associated with various diseases, such as other types of cancer and inflammation. The study of the immune tumor microenvironment and the substrates of PCs could contribute to the development of new and necessary immunotherapies to treat this pathology. Abstract Testicular Germ Cell Tumours (TGCT) are widely considered a “curable cancer” due to their exceptionally high survival rate, even if it is reduced by many years after the diagnosis due to metastases and relapses. The most common therapeutic approach to TGCTs has not changed in the last 50 years despite its multiple long-term side effects, and because it is the most common malignancy in young Caucasian men, much research is needed to better the quality of life of the many survivors. Proprotein Convertases (PC) are nine serine proteases responsible for the maturation of inactive proproteins with many diverse functions. Alterations in their expression have been associated with various diseases, including cancer and inflammation. Many of their substrates are adhesion molecules, metalloproteases and proinflammatory molecules, all of which are involved in tumour development. Inhibition of certain convertases has also been shown to slow tumour formation, demonstrating their involvement in this process. Considering the very established link between PCs and inflammation-related malignancies and the recent studies carried out into the immune microenvironment of TGCTs, the study of the involvement of PCs in testicular cancer may open up avenues for being both a biomarker for diagnosis and a therapeutic target.
Collapse
|
8
|
García-Caballero M, Torres-Vargas JA, Marrero AD, Martínez-Poveda B, Medina MÁ, Quesada AR. Angioprevention of Urologic Cancers by Plant-Derived Foods. Pharmaceutics 2022; 14:pharmaceutics14020256. [PMID: 35213989 PMCID: PMC8875200 DOI: 10.3390/pharmaceutics14020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The number of cancer cases worldwide keeps growing unstoppably, despite the undeniable advances achieved by basic research and clinical practice. Urologic tumors, including some as prevalent as prostate, bladder or kidney tumors, are no exceptions to this rule. Moreover, the fact that many of these tumors are detected in early stages lengthens the duration of their treatment, with a significant increase in health care costs. In this scenario, prevention offers the most cost-effective long-term strategy for the global control of these diseases. Although specialized diets are not the only way to decrease the chances to develop cancer, epidemiological evidence support the role of certain plant-derived foods in the prevention of urologic cancer. In many cases, these plants are rich in antiangiogenic phytochemicals, which could be responsible for their protective or angiopreventive properties. Angiogenesis inhibition may contribute to slow down the progression of the tumor at very different stages and, for this reason, angiopreventive strategies could be implemented at different levels of chemoprevention, depending on the targeted population. In this review, epidemiological evidence supporting the role of certain plant-derived foods in urologic cancer prevention are presented, with particular emphasis on their content in bioactive phytochemicals that could be used in the angioprevention of cancer.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - José Antonio Torres-Vargas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Ana Dácil Marrero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Beatriz Martínez-Poveda
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), E-28019 Madrid, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
| | - Ana R. Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
- Correspondence:
| |
Collapse
|
9
|
Pęksa R, Kunc M, Popęda M, Piątek M, Bieńkowski M, Żok J, Starzyńska A, Perdyan A, Sowa M, Duchnowska R, Biernat W. Combined Assessment of Immune Checkpoint Regulator VISTA on Tumor-Associated Immune Cells and Platelet-to-Lymphocyte Ratio Identifies Advanced Germ Cell Tumors with Higher Risk of Unfavorable Outcomes. Cancers (Basel) 2021; 13:cancers13081750. [PMID: 33916925 PMCID: PMC8067539 DOI: 10.3390/cancers13081750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Testicular germ cell tumors (GCTs) are the most common malignancies in young males. The current treatment regimens are usually highly effective and curative. Nevertheless, a portion of patients presents with recurrence or succumbs due to the disease. There is an undoubtful necessity to investigate new prognostic markers to stratify the risk of such events. The current study aimed to evaluate the prognostic significance of markers of the tumor microenvironment and systemic inflammation markers in GCTs. We found that low expression of immune checkpoint proteins VISTA (V-domain Ig suppressor of T cell activation) and PD-L1 (programmed death-ligand 1) on tumor-associated immune cells and elevated inflammatory marker platelet-to-lymphocyte ratio are associated with a higher risk of events in testicular GCTs. It indicates a role of both local anti-tumor immune response and systemic inflammation in these tumors. Abstract In the current study, we aimed to investigate whether expression of immune checkpoint proteins (V-domain Ig suppressor of T cell activation (VISTA) and programmed death-ligand 1 (PD-L1)) and markers of systemic inflammation could predict progression/relapse and death in the cohort of 180 patients with testicular germ-cell tumors (GCTs). Expression of PD-L1 and VISTA was assessed by immunohistochemistry utilizing tissue microarrays. To estimate systemic inflammation neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) were calculated. We found high PD-L1 and VISTA expression on tumor-associated immune cells (TAICs) in 89 (49.44%) and 63 (37.22%) of GCTs, respectively, whereas tumor cells besides trophoblastic elements were almost uniformly negative. High PD-L1 was associated with seminomatous histology and lower stage. Relapses in stage I patients occurred predominantly in cases with low numbers of PD-L1 and VISTA-expressing TAICs. In stage II/III disease, the combination of low VISTA-expressing TAICs and high PLR was identified as predictor of shorter event-free survival (HR 4.10; 1.48–11.36, p = 0.006) and overall survival (HR 15.56, 95% CI 1.78–135.51, p = 0.001) independently of tumor histology and location of metastases. We demonstrated that the assessment of immune checkpoint proteins on TAICs may serve as a valuable prognostic factor in patients with high-risk testicular GCTs. Further study is warranted to explore the predictive utility of these biomarkers in GCTs.
Collapse
Affiliation(s)
- Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
- Correspondence: ; Tel.: +48-58-349-3750
| | - Michał Kunc
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
| | - Marta Popęda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80211 Gdansk, Poland;
| | - Michał Piątek
- Department of Clinical Oncology/Chemotherapy, St Barbara Regional Specialist Hospital No 5, 41200 Sosnowiec, Poland;
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
| | - Jolanta Żok
- Department of Oncology, Regional Oncology Center in Gdansk, 80219 Gdansk, Poland;
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdansk, 80211 Gdansk, Poland;
| | - Adrian Perdyan
- Student Scientific Circle of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland;
| | - Marek Sowa
- Department of Urology, Medical University of Gdansk, 80214 Gdansk, Poland;
| | - Renata Duchnowska
- Department of Oncology, Military Institute in Warsaw, 01755 Warsaw, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, 80214 Gdansk, Poland; (M.K.); (M.B.); (W.B.)
| |
Collapse
|
10
|
Junker K, Eckstein M, Fiorentino M, Montironi R. PD1/PD-L1 Axis in Uro-oncology. Curr Drug Targets 2020; 21:1293-1300. [PMID: 32213156 DOI: 10.2174/1389450121666200326123700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
The immune system is important to control tumor development and progression in humans. However, tumor cells and cells of the tumor microenvironment can induce immune escape mechanisms including activation of immune checkpoints such as PD-1/PD-L1. Based on this knowledge, new immune therapies, including PD-1 and PD-L1 inhibition, have been developed and are already recommended as a standard treatment in metastatic bladder and kidney cancer patients. In addition to its role as a therapeutic target, PD-L1 seems to be a prognostic parameter although data are controversial. Only little is known about signaling pathways inducing PD-L1 expression in tumor cells on one hand and about its functional role for tumor cells itself. However, the understanding of the complex biological function of PD-L1 will improve therapeutic options in urological malignancies. This review is giving an overview of the current knowledge concerning the PD-1/PD-L1 axis in urological tumors including bladder, kidney, prostate, testicular and penile cancer.
Collapse
Affiliation(s)
- Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Rodolfo Montironi
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| |
Collapse
|
11
|
A Methylation-Based Reclassification of Bladder Cancer Based on Immune Cell Genes. Cancers (Basel) 2020; 12:cancers12103054. [PMID: 33092083 PMCID: PMC7593922 DOI: 10.3390/cancers12103054] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bladder cancer (BC) development is highly related to immune cell infiltration. In this study, we aimed to construct a new classification of bladder cancer molecular subtypes based on immune-cell-associated CpG(Methylation) sites. The classification was accurate and stable. BC patients were successfully divided into three subtypes based on the immune-cell-associated CpG sites. The clinicopathologic features, distribution of immune cells, level of expression of checkpoints, stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC co_stimulation, HLA, MHC class_I, Type I IFN_respons, Type II IFN response, and DNA stemness score (DNAss) presented significant differences among the three subgroups. The specific genomic alteration was also different across subgroups. High-level immune infiltration showed a correlation with high-level methylation. A lower RNA stemness score (RNAss) was associated with higher immune infiltration. Cluster 2 demonstrated a better response to chemotherapy. The anti-cancer targeted drug therapy results are different among the three subgroups. Abstract Background: Bladder cancer is highly related to immune cell infiltration. This study aimed to develop a new classification of BC molecular subtypes based on immune-cell-associated CpG sites. Methods: The genes of 28 types of immune cells were obtained from previous studies. Then, methylation sites corresponding to immune-cell-associated genes were acquired. Differentially methylated sites (DMSs) were identified between normal samples and bladder cancer samples. Unsupervised clustering analysis of differentially methylated sites was performed to divide the sites into several subtypes. Then, the potential mechanism of different subtypes was explored. Results: Bladder cancer patients were divided into three groups. The cluster 3 subtype had the best prognosis. Cluster 1 had the poorest prognosis. The distribution of immune cells, level of expression of checkpoints, stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC co_stimulation, HLA, MHC class_I, Type I IFN Response, Type II IFN Response, and DNAss presented significant differences among the three subgroups. The distribution of genomic alterations was also different. Conclusions: The proposed classification was accurate and stable. BC patients could be divided into three subtypes based on the immune-cell-associated CpG sites. Specific biological signaling pathways, immune mechanisms, and genomic alterations were varied among the three subgroups. High-level immune infiltration was correlated with high-level methylation. The lower RNAss was associated with higher immune infiltration. The study of the intratumoral immune microenvironment may provide a new perspective for BC therapy.
Collapse
|
12
|
Kalavska K, Schmidtova S, Chovanec M, Mego M. Immunotherapy in Testicular Germ Cell Tumors. Front Oncol 2020; 10:573977. [PMID: 33072608 PMCID: PMC7542989 DOI: 10.3389/fonc.2020.573977] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are malignancies with very high curative potential even in metastatic settings, mainly due to the introduction of cisplatin in the treatment of this disease. However, in a group of patients with cisplatin-refractory disease or with progressive disease despite high-dose salvage chemotherapy treatment, the prognosis is typically dismal. The triple combination of gemcitabine, oxaliplatin, and paclitaxel (GOP) has reasonable efficacy and is considered to be standard care for this group of patients. It remains to be seen, however, whether refractory TGCTs may represent a potential target for immune checkpoint inhibition. This review will focus on the rationale of the use of immunotherapy for platinum-refractory TGCTs and summarize data reporting experiences with immune checkpoint inhibitor treatment for this malignancy.
Collapse
Affiliation(s)
- Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.,Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Schmidtova
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.,Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Chovanec
- Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.,Second Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
13
|
Chen WZ, Jiang JX, Yu XY, Xia WJ, Yu PX, Wang K, Zhao ZY, Chen ZG. Endothelial cells in colorectal cancer. World J Gastrointest Oncol 2019; 11:946-956. [PMID: 31798776 PMCID: PMC6883186 DOI: 10.4251/wjgo.v11.i11.946] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
The dependence of tumor growth on neovascularization has become an important aspect of cancer biology. Tumor angiogenesis is one of the key mechanisms of tumorigenesis, growth and metastasis. The key events involved in this process are endothelial cell proliferation, migration, and vascular formation. Recent studies have revealed the importance of tumor-associated endothelial cells (TECs) in the development and progression of colorectal cancer (CRC), including epithelial proliferation, stem cell maintenance, angiogenesis, and immune remodeling. Decades of research have identified that the molecular basis of tumor angiogenesis includes vascular endothelial growth factors (VEGFs) and their receptor family, which are the main targets of antiangiogenesis therapy. VEGFs and their receptors play key roles in the pathology of angiogenesis, and their overexpression indicates poor prognosis in CRC. This article reviews the characteristics of the tumor vasculature and the role of TECs in different stages of CRC and immune remodeling. We also discuss the biological effects of VEGFs and their receptor family as angiogenesis regulators and emphasize the clinical implications of TECs in clinical treatment.
Collapse
Affiliation(s)
- Wu-Zhen Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jing-Xin Jiang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xiu-Yan Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wen-Jie Xia
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Xin Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Ke Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhi-Yong Zhao
- Department of Administrative Office, the First People’s Hospital of Jiande, Hangzhou 310000, Zhejiang Province, China
| | - Zhi-Gang Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front Oncol 2018; 8:367. [PMID: 30250827 PMCID: PMC6139307 DOI: 10.3389/fonc.2018.00367] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic cells that in turn initiates new vessel formation, which is prerequisite for further tumor growth and progression. This first endothelial lining is patchy, disordered in structure and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result, tumors were characterized by areas with an apparent oversupply in addition to areas with an undersupply of vessels, which complicates an efficient administration of intravenous drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT) because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor blood vessels contribute to the tumor escape from immunity by the lack of response to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion molecule expression. However, tumor vessels can remodel by the association with and integration of pericytes and smooth muscle cells which stabilize these immature vessels resulting in normalization of the vascular structures. This normalization of the tumor vascular bed could improve the efficiency of previously established therapeutic approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen distribution, and/or by overcoming endothelial anergy. This review highlights the current investigations that take advantage of a proper vascular function for improving cancer therapy with a special focus on the endothelial-immune system interplay.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|