1
|
Ju W, Lin L, Zhang Q, Lv X, Teng S, Hong Y, Shao Z, Na H, Yu S. GATA6 inhibits the biological function of non-small cell lung cancer by modulating glucose metabolism. J Cancer Res Clin Oncol 2024; 150:126. [PMID: 38483616 PMCID: PMC10940364 DOI: 10.1007/s00432-024-05664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE This study aims to explore the role of GATA6 in lung cancer, with a focus on its impact on metabolic processes. METHODS We assessed GATA6 expression in lung cancer tissues and its association with patient prognosis. In vitro cell function experiments were conducted to investigate the effects of altered GATA6 levels on lung cancer cell proliferation and migration. Mechanistic insights were gained by examining GATA6's influence on glucose metabolism-related genes, particularly its effect on c-Myc mRNA expression. RESULTS Our study revealed significant down-regulation of GATA6 in lung cancer tissues, and this down-regulation was strongly correlated with unfavorable patient prognosis. Elevating GATA6 levels effectively inhibited the proliferation and migration of lung cancer cells in our cell function experiments. Mechanistically, we found that GATA6 suppressed the expression of c-Myc mRNA, impacting genes related to glucose metabolism. As a result, glucose uptake and metabolism in lung cancer cells were disrupted, ultimately impeding their malignant behaviors. CONCLUSION Our study provides crucial insights into the metabolic regulation of GATA6 in lung cancer cells. These findings have the potential to offer a solid theoretical foundation for the development of novel clinical treatments for lung cancer.
Collapse
Affiliation(s)
- Weiwei Ju
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Qifang Zhang
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Xiumei Lv
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Shaohui Teng
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Yu Hong
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China
| | - Zhixiang Shao
- Pathology Department, Dandong First Hospital, Dandong, 118003, China
| | - Hanyun Na
- Pathology Department, Dandong First Hospital, Dandong, 118003, China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College of Liaodong University, Dandong, 118003, China.
| |
Collapse
|
2
|
Gao F, Wu Q, Lu D. MicroRNA-10a-5p-mediated downregulation of GATA6 inhibits tumor progression in ovarian cancer. Hum Cell 2024; 37:271-284. [PMID: 37768544 DOI: 10.1007/s13577-023-00987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer is the common cause of cancer-related death in women and is considered the most deadly gynecological cancer. It has been established that GATA-binding protein 6 (GATA6) is abnormally expressed in several types of malignant tumors and acts as an oncogenic protein or a tumor suppressor. However, the underlying mechanism of GATA6 in ovarian cancer progression has not been elucidated. Data in the present study revealed that GATA6 expression was negatively correlated to microRNA-10a-5p (miR-10a-5p) in ovarian cancer tissue and cells and that GATA6 is directly targeted by miR-10a-5p. Notably, upregulated miR-10a-5p dramatically inhibited ovarian cancer cell proliferation, tumorigenic ability, migration, and invasion by targeting GATA6. In vitro and in vivo experiments confirmed that miR-10a-5p-mediated downregulation of GATA6 suppressed Akt pathway activation. Overall, our findings suggest that miR-10a-5p could be a novel therapeutic target for ovarian cancer, and targeting the miR-10a-5p/GATA6/Akt axis could improve outcomes in this patient population.
Collapse
Affiliation(s)
- Feiying Gao
- Medical College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou, 225009, China
- Yangzhou Jiangdu Binjiang City People's Hospital, Yangzhou, 225211, China
| | - Qiang Wu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou, 225009, China
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dan Lu
- Medical College of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Rubio K, Müller JM, Mehta A, Watermann I, Olchers T, Koch I, Wessels S, Schneider MA, Araujo-Ramos T, Singh I, Kugler C, Stoleriu MG, Kriegsmann M, Eichhorn M, Muley T, Merkel OM, Braun T, Ammerpohl O, Reck M, Tresch A, Barreto G. Preliminary results from the EMoLung clinical study showing early lung cancer detection by the LC score. Discov Oncol 2023; 14:181. [PMID: 37787775 PMCID: PMC10547665 DOI: 10.1007/s12672-023-00799-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Lung cancer (LC) causes more deaths worldwide than any other cancer type. Despite advances in therapeutic strategies, the fatality rate of LC cases remains high (95%) since the majority of patients are diagnosed at late stages when patient prognosis is poor. Analysis of the International Association for the Study of Lung Cancer (IASLC) database indicates that early diagnosis is significantly associated with favorable outcome. However, since symptoms of LC at early stages are unspecific and resemble those of benign pathologies, current diagnostic approaches are mostly initiated at advanced LC stages. METHODS We developed a LC diagnosis test based on the analysis of distinct RNA isoforms expressed from the GATA6 and NKX2-1 gene loci, which are detected in exhaled breath condensates (EBCs). Levels of these transcript isoforms in EBCs were combined to calculate a diagnostic score (the LC score). In the present study, we aimed to confirm the applicability of the LC score for the diagnosis of early stage LC under clinical settings. Thus, we evaluated EBCs from patients with early stage, resectable non-small cell lung cancer (NSCLC), who were prospectively enrolled in the EMoLung study at three sites in Germany. RESULTS LC score-based classification of EBCs confirmed its performance under clinical conditions, achieving a sensitivity of 95.7%, 91.3% and 84.6% for LC detection at stages I, II and III, respectively. CONCLUSIONS The LC score is an accurate and non-invasive option for early LC diagnosis and a valuable complement to LC screening procedures based on computed tomography.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico
| | - Jason M Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Aditi Mehta
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Iris Watermann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Till Olchers
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Ina Koch
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Sabine Wessels
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Marc A Schneider
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Tania Araujo-Ramos
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Indrabahadur Singh
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Christian Kugler
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Mircea Gabriel Stoleriu
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Mark Kriegsmann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Martin Eichhorn
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Department of Thoracic Surgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Muley
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Olivia M Merkel
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Thomas Braun
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ole Ammerpohl
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Institute of Human Genetics, University Medical Center Ulm, 89081, Ulm, Germany
| | - Martin Reck
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France.
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany.
| |
Collapse
|
4
|
Duan HP, Yan JH, Nie L, Wang Y, Xie H. A noval prognostic signature of the N7-methylguanosine (m7G)-related miRNA in lung adenocarcinoma. BMC Pulm Med 2023; 23:14. [PMID: 36635678 PMCID: PMC9838007 DOI: 10.1186/s12890-022-02290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is characterized by high morbidity and mortality rates and poor prognosis. N7-methylguanosine play an increasingly vital role in lung adenocarcinoma. However, the prognostic value of N7-methylguanosine related-miRNAs in lung adenocarcinoma remains unclear. METHODS In the study, the mRNA and miRNA expression profiles and corresponding clinical informations were downloaded from the public database. The prognostic signature was built using least absolute shrinkage and selection operator Cox analysis. The Kaplan-Meier method was used to compare survival outcomes between the high- and low-risk groups. Signatures for the development of lung adenocarcinoma were tested using univariate and multivariate Cox regression models. Single-sample gene set enrichment analysis was used to determine the immune cell infiltration score. First, we predicted METTL1 and WDR4 chemosensitivities based on a public pharmacogenomics database. The area under the receiver operating characteristic curve showed that the performance of signature in 1-,3-, and 5-year survival predictions were 0.68, 0.65, and 0.683, respectively. RESULTS We established a novel prognostic signature consisting of 9 N7-Methylguanosine related miRNAs using least absolute shrinkage and selection operator Cox analysis. Patients in the high-risk group had shorter survival times than those in the low-risk group did. The calibration curves at 1, 3, and 5-year also illustrate the high predictive power of the structure. Signature was corrected using the Toumor stage. The expression levels of METTL1 and WDR4 significantly correlated with the sensitivity of cancer cells to antitumor drugs. CONCLUSIONS A novel signature constructed using 9 N7-methylguanosine related-miRNAs can be used for prognostic prediction.
Collapse
Affiliation(s)
- Han-ping Duan
- grid.449838.a0000 0004 1757 4123Department of Nuclear Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Jian-hui Yan
- grid.449838.a0000 0004 1757 4123Department of General Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Lin Nie
- grid.449838.a0000 0004 1757 4123Department of Radiology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Ye Wang
- grid.449838.a0000 0004 1757 4123Department of Thoracic Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Hui Xie
- grid.449838.a0000 0004 1757 4123Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, No. 25, Renmin West Road, Chenzhou, 423000 Hunan Province People’s Republic of China ,Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, 423000 Chenzhou, People’s Republic of China
| |
Collapse
|
5
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
6
|
Effect and Role of miR-196b in Ectopic Pregnancy. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7797484. [PMID: 35265305 PMCID: PMC8901340 DOI: 10.1155/2022/7797484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Ectopic pregnancy (EP) is associated with significant morbidity and mortality, but the molecular mechanism of this condition is still unclear. miR-196b, a hot research direction for the past few years, participates in the occurrence of various diseases but whether it plays a regulatory role in EP is still unclear. This research was set to investigate the expression and potential value of miR-196b in EP. qRT-PCR was utilized to determine the relative expression of miR-196b in peripheral blood of EP patients and to observe the expression changes of miR-196b before and after treatment. Correlation analysis of miR-196b with HCG and progesterone was performed. Logistic regression analysis was applied to independent risk factors affecting EP patients. TargetScan was utilized to predict the downstream target genes of miR-196b, and GO and KEGG analysis was carried out using the R language pack. qRT-PCR showed that miR-196b expression in peripheral blood of EP patients was lower than that of normal people. miR-196b expression in patients after treatment was notably higher than that before treatment. In addition, correlation analysis showed that miR-196b was positively correlated with the expression of HCG, progesterone, and estradiol. Risk factor analysis revealed that abortion history, pelvic inflammatory disease history, lower abdominal surgery history, and miR-196b were independent risk factors for EP, and the AUC of the combined ROC curve was 0.899. GO function enrichment and KEGG signal pathway enrichment found 10 potential functions and 2 potential signal pathways of miR-196b. miR-196b is expressed in EP patients, is differentially expressed according to the change in EP condition, and is expected to become a promising index for clinical diagnosis of EP.
Collapse
|
7
|
Yu J, He X, Fang C, Wu H, Hu L, Xue Y. MicroRNA‑200a‑3p and GATA6 are abnormally expressed in patients with non‑small cell lung cancer and exhibit high clinical diagnostic efficacy. Exp Ther Med 2022; 23:281. [PMID: 35317445 PMCID: PMC8908458 DOI: 10.3892/etm.2022.11210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is one of the main threats to human health. Survival of patients with lung cancer depends on timely detection and diagnosis. Among the genetic irregularities that control cancer development and progression, there are microRNAs (miRNAs/miRs). The present study aimed to investigate the expression patterns of miR-200a-3p and transcription factor GATA-6 (GATA6) in peripheral blood of patients with non-small cell lung cancer (NSCLC) and their clinical significance. The expression patterns of miR-200a-3p and GATA6 in the peripheral blood of patients with NSCLC and healthy subjects were measured via reverse transcription-quantitative PCR. The correlation between GATA6/miR-200a-3p expression and their diagnostic efficacy were analyzed by receiver operating characteristic curve analysis. The association between miR-200a-3p/GATA6 expression with the patient clinicopathological characteristics, and their correlation with carcinoembryonic antigen (CEA), neuron specific enolase (NSE) and squamous cell carcinoma antigen (SCCAg) were evaluated. The cumulative survival rate was examined, and whether miR-200a-3p and GATA6 expression levels were independently correlated with the prognosis of NSCLC was analyzed using multivariate logistic regression model. The results demonstrated that the expression of miR-200a-3p was high and that of GATA6 was low in the peripheral blood of patients with NSCLC, and both exhibited high clinical diagnostic efficacy. miR-200a-3p was revealed to target GATA6 by dual-luciferase assay. miR-200a-3p in the peripheral blood was correlated with TNM stage, lymph node metastasis and distal metastasis, while GATA6 in the peripheral blood was correlated with TNM stage and lymph node metastasis. miR-200a-3p and GATA6 were positively correlated with CEA and SCCAg, but not with NSE. High expression of miR-200a-3p and low expression of GATA6 predicted poor prognosis in patients with NSCLC. After adjusting for TNM stage, lymph node metastasis, distance metastasis, GATA6, CEA, NSE and SCCAg in the logistic regression model, it was indicated that the high expression of miR-200a-3p increased the risk of death in patients with NSCLC. Collectively, it was revealed that miR-200a-3p and GATA6 were abnormally expressed in the peripheral blood of patients with NSCLC. Serum levels of miR-200a-3p >1.475 and GATA6 <1.195 may assist the early diagnosis of NSCLC. GATA6 may function in NSCLC as a miR-200a-3p target, which may provide a future reference for NSCLC early diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Xinyun He
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Haixia Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Lei Hu
- Department of Laboratory Medicine, Guizhou Women's and Children's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Yingbo Xue
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
8
|
Xu J, Wang J, Liu L, Chen L, Hu S, Liu F. MicroRNA -196b is related to the overall survival of patients with esophageal squamous cell carcinoma and facilitates tumor progression by regulating SOCS2 (Suppressor Of Cytokine Signaling 2). Bioengineered 2021; 12:7737-7746. [PMID: 34605350 PMCID: PMC8806835 DOI: 10.1080/21655979.2021.1982329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is common cancer in China. At the same time, microRNA-196b (miR-196b) has different promotion/inhibition effects in different cancers. The study aims to reveal the role of miR-196b in ESCC and explore its prognostic value. The expression of miR-196b in ESCC samples and cell lines was detected to explore the expression pattern of miR-196b in ESCC. Kaplan-Meier method was conducted for survival rate and Multivariate Cox analysis was used to explore the clinical significance of miR-196b in ESCC. The Cell Counting Kit-8 (CCK-8) assay, transwell migration and invasion tests were used to determine the biological function of miR-196b in ESCC. The relationship of miR-196b and SOCS2 in ESCC was detected by luciferase activity assay and RIP assay. Both in ESCC tissues and cell lines, miR-196b expression was up-regulated. miR-196b expression is related to TNM stage and lymph node metastasis. Combining with the results of Multivariate Cox regression analysis, miR-196b may be a potential independent prognostic marker for ESCC patients. The results of the functional analysis showed that miR-196b inhibitor can reduce cell proliferation, migration and invasion in ESCC cells. Besides, the suppressor of cytokine signaling 2 (SOCS2) is the target of miR-196b in ESCC. miR-196b may exist as a tumor-promoting factor in ESCC and enhance the proliferation abilities, migration capacities, and invasion potential of ESCC cells by targeting SOCS2. miR-196b and SOCS2 have a close negative correlation in ESCC, which may be used as a clinically poor prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jinlong Xu
- Department of Cardiothoracic Surgery, Zhucheng People's Hospital, Weifang, Shandong, China
| | - Jinmei Wang
- Department of Outpatient Operating Room, Zhucheng People's Hospital, Weifang, Shandong, China
| | - Lili Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Chen
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Songliu Hu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng Liu
- Department of Cardiothoracic Surgery, Zhucheng People's Hospital, Weifang, Shandong, China
| |
Collapse
|
9
|
Zhu SJ, Wang X, Hu SL, Fang Y, Guan BX, Li J, Li G, Xu JY. Clinical Significance and Biological Function of miR-1274a in Non-small Cell Lung Cancer. Mol Biotechnol 2021; 64:9-16. [PMID: 34427871 DOI: 10.1007/s12033-021-00385-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
Since the discovery of microRNAs (miRNAs) as a class of important regulatory molecules, miRNAs are involved in the occurrence and development of tumors. In this paper, we aimed to identify the role of miR-1274a in non-small cell lung cancer (NSCLC). The miR-1274a expression levels in four NSCLC cells and tissues from 125 patients were determined by qRT-PCR assays. Kaplan-Meier survival curves and Cox regression analysis were used to examine the prognostic significance of miR-1274a in NSCLC patients. The CCK-8 and Transwell assays were performed to evaluate the cell proliferation, invasion, and migration ability of NSCLC cells. The miR-1274a expression levels were significantly higher in NSCLC tissues than in adjacent normal tissues, and overexpression of miR-1274a had a poor prognosis in NSCLC patients. Functional studies in two NSCLC cell lines have shown that overexpression of miR-1274a could promote cell proliferation, migration, and invasion. miR-1274a expression levels are upregulated in NSCLC tissues, and a high expression is associated with a poor prognosis in patients with NSCLC. Moreover, miR-1274a promotes cell proliferation, migration, and invasion. Based on our findings, miR-1274a may act as a tumor miRNA in the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Shi-Jia Zhu
- Clinical Oncology Center, Hong Kong University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiao Wang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Song-Liu Hu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Yu Fang
- Department of Phase I Clinical Trial, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150040, Heilongjiang, China
| | - Bi-Xi Guan
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Jian Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Gen Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China
| | - Jian-Yu Xu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
10
|
Tan X, Ren S, Fu MZ, Ren S, Yang C, Wu X, Chen T, Latham PS, Meltzer SJ, Fu SW. microRNA-196b promotes esophageal squamous cell carcinogenesis and chemoradioresistance by inhibiting EPHA7, thereby restoring EPHA2 activity. Am J Cancer Res 2021; 11:3594-3610. [PMID: 34354862 PMCID: PMC8332861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/17/2021] [Indexed: 06/13/2023] Open
Abstract
Esophageal cancer (EC) is extremely aggressive and has a very poor survival rate. Esophageal squamous cell carcinoma (ESCC) accounts for 80% of all ECs worldwide, with the majority of the remaining 20% being esophageal adenocarcinoma (EAC). Due to its occult and insidious presentation, ESCC is typically diagnosed and treated in its advanced stages, thereby limiting the success of present therapeutic modalities. microRNAs (miRNAs) can function as tumor suppressors or oncogenes, playing critical roles in cancer initiation and progression by regulating target genes in oncogenic pathways. In the current study, we demonstrated that microRNA-196b (miR-196b) is one of the most upregulated miRNAs in both ESCC and EAC. miR-196b was overexpressed in ESCC and EAC cell lines, cellular exosomal RNAs, and ESCC tissue samples. Functional studies revealed that miR-196b acted as an oncomiR by directly targeting a tumor suppressor, ephrin type-A receptor 7 (EPHA7). EPHA7 abrogates the activity of ephrin type-A receptor 2 (EPHA2), a key molecule involved in the epithelial-to-mesenchymal transition (EMT) and MAPK/ERK pathways, mediating resistance to UV and chemoradiotherapy in both ESCC and EAC. Taken together, these findings suggest that miR-196b is a strong candidate molecular target for EC treatment.
Collapse
Affiliation(s)
- Xiaohui Tan
- Department of Medicine, Division of Genomic Medicine, Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| | - Shuchang Ren
- Department of Medicine, Division of Genomic Medicine, Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| | - Melinda Z Fu
- Department of Medicine, Division of Genomic Medicine, Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| | - Shuyang Ren
- Department of Medicine, Division of Genomic Medicine, Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| | - Canyuan Yang
- Department of Medicine, Division of Genomic Medicine, Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| | - Xiaoling Wu
- Department of Medicine, Chengdu Military General HospitalChengdu, Sichuan, China
| | - Tao Chen
- Department of Medicine, Chengdu Military General HospitalChengdu, Sichuan, China
| | - Patricia S Latham
- Department of Pathology, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| | - Stephen J Meltzer
- Departments of Medicine and Oncology, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer CenterBaltimore, MD, USA
| | - Sidney W Fu
- Department of Medicine, Division of Genomic Medicine, Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health SciencesWashington, DC, USA
| |
Collapse
|
11
|
Kang H, Ma D, Zhang J, Zhao J, Yang M. Long non-coding RNA GATA6-AS1 upregulates GATA6 to regulate the biological behaviors of lung adenocarcinoma cells. BMC Pulm Med 2021; 21:166. [PMID: 33992085 PMCID: PMC8126172 DOI: 10.1186/s12890-021-01521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is known to be one of the leading causes of cancer-related deaths globally. In recent decades, long non-coding RNAs (lncRNAs) have been indicated to exert pivotal regulating functions in multiple biological behaviors in the initiation and development of LUAD. However, the functional mechanism of lncRNA GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in LUAD has not been explored. Methods In the current study, GATA6-AS1 expression in LUAD tissues was revealed. Meanwhile, GATA6-AS1 expression in LUAD cells was investigated via RT-qPCR analysis. After A549 and H1975 cells were transfected with GATA6-AS1 overexpression plasmids, EdU and colony formation assays, TUNEL assays and flow cytometry analyses, as well as wound healing and Transwell assays were conducted to detect cell proliferation, apoptosis, migration and invasion. Afterwards, bioinformatic tools, western blot analyses, dual-luciferase reporter assays, and RNA immunoprecipitation (RIP) assays were performed to investigate the correlation of microRNA-4530 (miR-4530), GATA6-AS1 and GATA6. Results We found that GATA6-AS1 expression was low-expressed in LUAD tissues and cells. Furthermore, the upregulation of GATA6-AS1 suppressed the proliferative, migration and invasion abilities, as well as promoted apoptotic rate of A549 and H1975 cells. Moreover, the mechanistic investigations revealed that GATA6-AS1 upregulated the expression of its cognate sense gene GATA6 by binding with miR-4530, thereby modulating the malignant progression of LUAD cells. Conclusions GATA6-AS1 repressed LUAD cell proliferation, migration and invasion, and promoted cell apoptosis via regulation of the miR-4530/GATA6 axis, indicating GATA6-AS1 as a new prognostic biomarker for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01521-7.
Collapse
Affiliation(s)
- Honggang Kang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Dan Ma
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Jing Zhang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China.
| | - Jun Zhao
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Mengxiang Yang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| |
Collapse
|
12
|
MicroRNA-4325 Suppresses Cell Progression in Hepatocellular Carcinoma via GATA-Binding Protein 6. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6616982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
MicroRNAs (miRs) are regulators of the formation and development of hepatocellular carcinoma (HCC). The biological role of miR-4325 in HCC has yet to be determined. This study is aimed at dissecting the role of miR-4325 in HCC and the underlying mechanism. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-4325 expression in HCC tissue specimens and cells. Cell proliferation, migration, and invasion were assessed by using the MTT assay and Transwell assay, respectively. The miR-4325 target was predicted based on bioinformatics analysis and validated using the dual-luciferase reporter assay. Rescue experiments in the cells were utilized to functionally characterize the downstream molecular targets of miR-4325. We observed that miR-4325 expression levels were significantly reduced in both HCC tissue specimens and cell lines. Meanwhile, a lower miR-4325 level was associated with a poorer prognosis. Gain and loss of function assays revealed that miR-4325 markedly downregulated HCC cell growth, migration, and invasion. Moreover, we identified GATA-binding protein 6 (GATA6) as a miR-4325 target and found that GATA6 was abnormally expressed in HCC. Rescue assays demonstrated that the regulatory function of miR-4325 in HCC was mediated by GATA6. Taken together, miR-4325 suppresses HCC cell growth, migration, and invasion by targeting GATA6, suggesting that miR-4325 may potentially serve as a novel therapeutic target for HCC.
Collapse
|
13
|
Du H, Bao Y, Liu C, Zhong A, Niu Y, Tang X. miR‑139‑5p enhances cisplatin sensitivity in non‑small cell lung cancer cells by inhibiting cell proliferation and promoting apoptosis via the targeting of Homeobox protein Hox‑B2. Mol Med Rep 2021; 23:104. [PMID: 33300085 PMCID: PMC7723155 DOI: 10.3892/mmr.2020.11743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of chemotherapeutic dug resistance hinders the clinical treatment of cancer. MicroRNAs (miRNAs/miRs) have been revealed to serve essential roles in the drug resistance of numerous types of cancer. miR‑139‑5p was previously reported to be associated with cisplatin (DDP) sensitivity in human nasopharyngeal carcinoma cells and colorectal cancer cells. However, the effect and underlying mechanism of miR‑139‑5p in DDP sensitivity in non‑small cell lung cancer (NSCLC) cells has not yet been fully elucidated. In the present study, the expression of miR‑139‑5p and Homeobox protein Hox‑B2 (HOXB2) in NSCLC tissues was examined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting. Subsequently, the effect of miR‑139‑5p on the DDP sensitivity of NSCLC cells in vitro was investigated. Cell proliferation was examined using a Cell Counting Kit‑8 assay. Western blotting was used to evaluate the protein expression of HOXB2, phosphorylated (p)‑PI3K, p‑AKT, caspase‑3 and cleaved‑caspase‑3, and RT‑qPCR was used to evaluate the expression of miR‑139‑5p, and the mRNA expression levels of HOXB2, PI3K, AKT and caspase‑3. The apoptotic rate of the cells was detected using flow cytometry. miR‑139‑5p expression in NSCLC tissues was shown to be significantly lower compared with that in adjacent tissues. Additionally, miR‑139‑5p increased cell apoptosis and inhibited NSCLC cell proliferation induced by DDP in vitro via modulating the PI3K/AKT/caspase‑3 signaling pathway. Furthermore, HOXB2 was identified to be a target of miR‑139‑5p, and miR‑139‑5p was revealed to sensitize NSCLC cells to DDP via the targeting of HOXB2. Taken together, the results of the present study demonstrated that regulating the expression of miR‑139‑5p could provide a novel approach to reverse DDP resistance and increase chemosensitivity in the treatment of NSCLC.
Collapse
Affiliation(s)
- Hailian Du
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Ya'nan Bao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Chunying Liu
- Ultrasonic Department, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Anqiao Zhong
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Yikai Niu
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Xingping Tang
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
14
|
Wu X, Wu G, Zhang H, Peng X, Huang B, Huang M, Ding J, Mao C, Peng C. MiR-196b Promotes the Invasion and Migration of Lung Adenocarcinoma Cells by Targeting AQP4. Technol Cancer Res Treat 2021; 20:1533033820985868. [PMID: 33455522 PMCID: PMC8097310 DOI: 10.1177/1533033820985868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4
underlying the invasion and migration of lung adenocarcinoma (LUAD)
cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database
and then differential analysis was used to identify the target miRNA. Target
gene for the miRNA was obtained via prediction using 3 bioinformatics
databases and intersection with the differentially expressed mRNAs searched
from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the
expression of miR-196b and AQP4. Dual-luciferase reporter assay was
performed to confirm the targeting relationship between miR-196b and AQP4.
Transwell assay was used to investigate the migration and invasion of LUAD
cells. Results: MiR-196b was screened out by differential and survival analyses, and the
downstream target gene AQP4 was identified. In LUAD, miR-196b was highly
expressed while AQP4 was poorly expressed. Besides, overexpression of
miR-196b promoted cell invasion and migration, while overexpression of AQP4
had negative effects. Moreover, the results of the dual-luciferase reporter
assay suggested that AQP4 was a direct target of miR-196b. In addition, we
also found that overexpressing AQP4 could suppress the promotive effect of
miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating
AQP4, which helps us find new molecular targeted therapies for LUAD.
Collapse
Affiliation(s)
- Xuhui Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui City People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
15
|
Xu Q, Xu Z. miR-196b-5p Promotes Proliferation, Migration and Invasion of Lung Adenocarcinoma Cells via Targeting RSPO2. Cancer Manag Res 2021; 12:13393-13402. [PMID: 33402849 PMCID: PMC7778444 DOI: 10.2147/cmar.s274171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the biological role of miR-196b-5p/RSPO2 in the occurrence and development of lung adenocarcinoma (LUAD) and to provide a basis for finding new therapeutic targets for LUAD. Methods Differentially expressed genes were analyzed based on LUAD microarray, and the target gene of the target miRNA was predicted. qRT-PCR was used to detect the expression levels of miR-196b-5p and RSPO2 mRNA in normal human bronchial epithelial cell line BEAS-2B and LUAD cell lines A549, NCI-H1792 and NCI-H226. Western blot was used to evaluate protein expression. Cell proliferative, migratory and invasive abilities were detected by CCK-8 and transwell assays. Dual-luciferase assay was conducted to verify the targeting relationship between miR-196b-5p and RSPO2. Results The results of qRT-PCR showed that miR-196b-5p was significantly highly expressed in LUAD cells, and the expression level of its downstream target gene RSPO2 was significantly decreased. The results of CCK-8 and transwell assays exhibited that miR-196b-5p promoted proliferation, migration and invasion of LUAD cells, while RSPO2 inhibited the malignant progression of LUAD cells. Dual-luciferase assay confirmed the targeted binding relationship between miR-196b-5p and RSPO2. Overexpression of RSPO2 partially reversed the promotion of miR-196b-5p on proliferation, migration and invasion of LUAD cells. Conclusion miR-196b-5p promoted proliferation, migration and invasion of LUAD cells by targeting and down-regulating RSPO2, which provided ideas for searching new targets for the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Zhenwu Xu
- Department of Thoracic Medical Oncology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, 350014, People's Republic of China
| |
Collapse
|
16
|
Souza CP, Cinegaglia NC, Felix TF, Evangelista AF, Oliveira RA, Hasimoto EN, Cataneo DC, Cataneo AJM, Scapulatempo Neto C, Viana CR, de Paula FE, Drigo SA, Carvalho RF, Marques MMC, Reis RM, Reis PP. Deregulated microRNAs Are Associated with Patient Survival and Predicted to Target Genes That Modulate Lung Cancer Signaling Pathways. Cancers (Basel) 2020; 12:E2711. [PMID: 32971741 PMCID: PMC7563870 DOI: 10.3390/cancers12092711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Although the advances in diagnostic and treatment strategies, lung cancer remains the leading cause of cancer-related deaths, worldwide, with survival rates as low as 16% in developed countries. Low survival rates are mainly due to late diagnosis and the lack of effective treatment. Therefore, the identification of novel, clinically useful biomarkers is still needed for patients with advanced disease stage and poor survival. Micro(mi)RNAs are non-coding RNAs and potent regulators of gene expression with a possible role as diagnostic, prognostic and predictive biomarkers in cancer. (2) Methods: We applied global miRNA expression profiling analysis using TaqMan® arrays in paired tumor and normal lung tissues (n = 38) from treatment-naïve patients with lung adenocarcinoma (AD; n = 23) and lung squamous cell carcinoma (SCC; n = 15). miRNA target genes were validated using The Cancer Genome Atlas (TCGA) lung AD (n = 561) and lung SCC (n = 523) RNA-Seq datasets. (3) Results: We identified 33 significantly deregulated miRNAs (fold change, FC ≥ 2.0 and p < 0.05) in tumors relative to normal lung tissues, regardless of tumor histology. Enrichment analysis confirmed that genes targeted by the 33 miRNAs are aberrantly expressed in lung AD and SCC, and modulate known pathways in lung cancer. Additionally, high expression of miR-25-3p was significantly associated (p < 0.05) with poor patient survival, when considering both tumor histologies. (4) Conclusions: miR-25-3p may be a potential prognostic biomarker in non-small cell lung cancer. Genes targeted by miRNAs regulate EGFR and TGFβ signaling, among other known pathways relevant to lung tumorigenesis.
Collapse
Affiliation(s)
- Cristiano P. Souza
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.P.S.); (E.N.H.); (D.C.C.); (A.J.M.C.); (S.A.D.)
- Experimental Research Unity (UNIPEX), São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (N.C.C.); (T.F.F.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
| | - Naiara C. Cinegaglia
- Experimental Research Unity (UNIPEX), São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (N.C.C.); (T.F.F.)
| | - Tainara F. Felix
- Experimental Research Unity (UNIPEX), São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (N.C.C.); (T.F.F.)
| | - Adriane F. Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
| | - Rogério A. Oliveira
- Department of Biostatistics, Plant Biology, Parasitology, and Zoology, Institute of Biosciences, São Paulo State University UNESP, Botucatu 18618-689, SP, Brazil;
| | - Erica N. Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.P.S.); (E.N.H.); (D.C.C.); (A.J.M.C.); (S.A.D.)
| | - Daniele C. Cataneo
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.P.S.); (E.N.H.); (D.C.C.); (A.J.M.C.); (S.A.D.)
| | - Antônio J. M. Cataneo
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.P.S.); (E.N.H.); (D.C.C.); (A.J.M.C.); (S.A.D.)
| | - Cristovam Scapulatempo Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
| | - Cristiano R. Viana
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
| | - Flávia E. de Paula
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
| | - Sandra A. Drigo
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.P.S.); (E.N.H.); (D.C.C.); (A.J.M.C.); (S.A.D.)
- Experimental Research Unity (UNIPEX), São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (N.C.C.); (T.F.F.)
| | - Robson F. Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, SP, Brazil;
| | - Márcia M. C. Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
- Barretos School of Health Sciences, Barretos 14785-002, SP, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil; (A.F.E.); (C.S.N.); (C.R.V.); (F.E.d.P.); (M.M.C.M.); (R.M.R.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 410-057 Braga/Guimarães, Portugal
| | - Patricia P. Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (C.P.S.); (E.N.H.); (D.C.C.); (A.J.M.C.); (S.A.D.)
- Experimental Research Unity (UNIPEX), São Paulo State University, UNESP, Botucatu 18618-687, SP, Brazil; (N.C.C.); (T.F.F.)
| |
Collapse
|
17
|
Zou W, Hu X, Wang D, Jiang L. Prognostic Value of MiRNAs in Patients with Laryngeal Cancer: A Systematic Review and Meta-Analysis. Curr Cancer Drug Targets 2020; 20:802-810. [PMID: 32767932 DOI: 10.2174/1568009620666200806094709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Many studies have explored the relationship between the expression level of miRNAs and the prognosis of patients with laryngeal cancer (LC). However, the prognostic value of miRNA in LC patients has not been comprehensively evaluated. METHODS PubMed, Web of Science, Embase, and Cochrane Database of Systematic Reviews were extensively searched for all studies published before the end of February 2020 that investigated the correlation between miRNA expression level and clinical prognosis in patients with LC. RESULTS Twenty-one studies involving 1784 patients were included in our meta-analysis. The survival endpoints of OS and DFS were 1.69 (95% CI 1.45-1.98; p < 0.05) and 3.62 (95% CI 2.34-5.62; p < 0.05), respectively. Both OS and DFS results were statistically significant. Subgroup analyses were performed by evaluating the effects of miR-196b, miR-375, and miR-21 on OS and the effects of miR-34c-5p on DFS. The results obtained for miR-196b and miR-34c-5p were statistically significant. CONCLUSION The results indicate that miRNAs, as prognostic biomarkers for LC, play an important role in clinical value. In particular, miR-196b and miR-34c-5p have the potential to be used as prognostic biomarkers. However, further large-scale cohort studies based on these miRNAs are urgently needed to validate their clinical value and help determine the direction of future clinical work in the area.
Collapse
Affiliation(s)
- Wujun Zou
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyan Hu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Dingting Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liang Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
18
|
miR-196b-5p-mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer. Proc Natl Acad Sci U S A 2020; 117:4347-4357. [PMID: 32041891 DOI: 10.1073/pnas.1917531117] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases. The RNA binding protein, QKI, belongs to the STAR family and plays tumor-suppressive functions in NSCLC. QKI-5 is a major isoform of QKIs and is predominantly expressed in NSCLC. However, the underlying mechanisms of QKI-5 in NSCLC progression remain unclear. We found that QKI-5 regulated microRNA (miRNA), miR-196b-5p, and its expression was significantly up-regulated in NSCLC tissues. Up-regulated miR-196b-5p promotes lung cancer cell migration, proliferation, and cell cycle through directly targeting the tumor suppressors, GATA6 and TSPAN12. Both GATA6 and TSPAN12 expressions were down-regulated in NSCLC patient tissue samples and were negatively correlated with miR-196b-5p expression. Mouse xenograft models demonstrated that miR-196b-5p functions as a potent onco-miRNA, whereas TSPAN12 functions as a tumor suppressor in NSCLC in vivo. QKI-5 bound to miR-196b-5p and influenced its stability, resulting in up-regulated miR-196b-5p expression in NSCLC. Further analysis showed that hypomethylation in the promoter region enhanced miR-196b-5p expression in NSCLC. Our findings indicate that QKI-5 may exhibit novel anticancer mechanisms by regulating miRNA in NSCLC, and targeting the QKI5∼miR-196b-5p∼GATA6/TSPAN12 pathway may enable effectively treating some NSCLCs.
Collapse
|
19
|
Ma R, Li X, Liu H, Jiang R, Yang M, Zhang M, Wang Y, Zhao Y, Li H. GATA6-upregulating autophagy promotes TKI resistance in nonsmall cell lung cancer. Cancer Biol Ther 2019; 20:1206-1212. [PMID: 31092103 DOI: 10.1080/15384047.2019.1599665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays a complicated role in tumorigenesis, and the effects of autophagy in drug resistance have not been fully known. The aim of this study was to evaluate autophagy activity in lung cancer cells derived from different origins and explore the mechanism regulating autophagy in tyrosine kinase inhibitor (TKI) resistance. We found basal level of autophagy had no significant increase in resistant H1650 and H1975 cells compared with sensitive HCC827 and PC9 cells. After erlotinib treatment, the autophagy activity enhanced threefold in H1650 cells but a little in H1975 cells. Inhibiting autophagy with 3-MA increased apoptosis in H1650 rather than H1975 cells. Combined with transmission microscope, results showed PC9 cells tended to be apoptotic and more autophagosomes formed in H1650 cells, which may be correlated with cell viability. GATA6 expression was found markedly elevated in H1650 cells after erlotinib and knocking down GATA6 led to significantly reduced autophagy activity and cell viability. Furthermore, a significant increase of GATA6 and LC3-II expression was observed in insensitive tissues compared with sensitive ones by immunostaining in nonsmall cell lung cancer (NSCLC) patients. With chi-square test, we found GATA6 was positively correlated with LC3-II. The Kaplan-Meier curve analyses further showed patients with high GATA6 had lower overall survival and progression-free survival rates than those with low GATA6 after EGFR-TKI treatment. Our results suggest that GATA6 could enhance autophagy activity contributing to TKI resistance. Targeting GATA6 and autophagy together with TKI may be promising to overcome drug resistance in NSCLC.
Collapse
Affiliation(s)
- Ruishuang Ma
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Xin Li
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Huan Liu
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University , Jining , Shandong , China
| | - Rui Jiang
- Department of General Medical, The Second Affiliated Hospital of Harbin medical University , Harbin , Heilongjiang Province , China
| | - Maopeng Yang
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Minghui Zhang
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Yan Wang
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Yanbin Zhao
- Department of Internal Medical Oncology, Harbin medical University Cancer Hospital , Harbin , Heilongjiang Province , China
| | - Hulun Li
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University , Heilongjiang Province , Harbin , China
| |
Collapse
|