1
|
Yang YCSH, Ko PJ, Pan YS, Lin HY, Whang-Peng J, Davis PJ, Wang K. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J Biomed Sci 2021; 28:24. [PMID: 33827580 PMCID: PMC8028191 DOI: 10.1186/s12929-021-00719-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone analogues-particularly, L-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.
Collapse
Affiliation(s)
- Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 11031, Taiwan
| | - Po-Jui Ko
- School of Medicine, I-Shou University, Kaohsiung, 84001, Taiwan.,Department of Pediatrics, E-DA Hospital, Kaohsiung, 82445, Taiwan
| | - Yi-Shin Pan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.
| | - Jacqueline Whang-Peng
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA.,Albany Medical College, Albany, NY, 12144, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
2
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|