1
|
Liu M, Song X, Sun Y, Zhang T. LncRNA OIP5-AS1 Targets the miR-140-5p/UBR5 Cascade to Promote the Development of Gastric Cancer. Mol Biotechnol 2024; 66:3583-3596. [PMID: 38112962 DOI: 10.1007/s12033-023-00958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Gastric cancer (GC) is a malignant tumor with the highest incidence among all kinds of malignant tumors in China. Long noncoding RNAs (LncRNAs) have been reported to act as microRNA (miRNAs) sponges and thus play key roles in biological processes and pathogenesis. Thus, this study aimed to investigate the functional effects and the regulatory mechanism of lncRNA opa interacting protein 5-antisense 1 (OIP5-AS1) in gastric cancer cells. The expression of OIP5-AS1, miR-140-5p, Ubiquitin protein ligase E3 component n-recognin 5 (UBR5) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were assessed using Cell-Counting Kit-8 (CCK-8), Flow cytometry, and Transwell assays. UBR5 protein level was detected by Western blot. Binding between miR-140-5p and OIP5-AS1 or UBR5 was predicted by Starbasev2.0 and TargetScan, and verified using Dual-luciferase reporter assays and RNA pull-down assay. A xenograft mice model was used to evaluate the effects of OIP5-AS1 on tumor growth in vivo. OIP5-AS1 was upregulated in GC cancer and cells. OIP5-AS1 knockdown inhibited cell proliferation, migration, invasion, but induced cell apoptosis in GC. In mechanism, OIP5-AS1 might serve as a sponge for miR-140-5p to enhance UBR5 expression. Moreover, overexpression of miR-140-5p or UBR5 partly reversed the effects of OIP5-AS1 depletion on the progression of GC cells. Furthermore, OIP5-AS1 depletion also suppressed tumor growth in vivo. OIP5-AS1 silencing might suppress proliferation, migration, invasion, and induced apoptosis in GC cells by regulating the miR-140-5p/UBR5 axis.
Collapse
Affiliation(s)
- Mei Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China
| | - Xiujun Song
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China
| | - Yinyin Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China.
| | - Tieshan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei Province, China.
| |
Collapse
|
2
|
Guo J, Zhong L, Momeni MR. MicroRNA-155 and its exosomal form: Small pieces in the gastrointestinal cancers puzzle. Cell Biol Toxicol 2024; 40:77. [PMID: 39283408 PMCID: PMC11405467 DOI: 10.1007/s10565-024-09920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Gastrointestinal (GI) cancers are common cancers that are responsible for a large portion of global cancer fatalities. Due to this, there is a pressing need for innovative strategies to identify and treat GI cancers. MicroRNAs (miRNAs) are short ncRNAs that can be considered either cancer-causing or tumor-inhibiting molecules. MicroRNA-155, also known as miR-155, is a vital regulator in various cancer types. This miRNA has a carcinogenic role in a variety of gastrointestinal cancers, including pancreatic, colon, and gastric cancers. Since the abnormal production of miR-155 has been detected in various malignancies and has a correlation with increased mortality, it is a promising target for future therapeutic approaches. Moreover, exosomal miR-155 associated with tumors have significant functions in communicating between cells and establishing the microenvironment for cancer in GI cancers. Various types of genetic material, such as specifically miR-155 as well as proteins found in cancer-related exosomes, have the ability to be transmitted to other cells and have a function in the advancement of tumor. Therefore, it is critical to conduct a review that outlines the diverse functions of miR-155 in gastrointestinal malignancies. As a result, we present a current overview of the role of miR-155 in gastrointestinal cancers. Our research highlighted the role of miR-155 in GI cancers and covered critical issues in GI cancer such as pharmacologic inhibitors of miRNA-155, miRNA-155-assosiated circular RNAs, immune-related cells contain miRNA-155. Importantly, we discussed miRNA-155 in GI cancer resistance to chemotherapy, diagnosis and clinical trials. Furthermore, the function of miR-155 enclosed in exosomes that are released by cancer cells or tumor-associated macrophages is also covered.
Collapse
Affiliation(s)
- Jinbao Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Zhong
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | | |
Collapse
|
3
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
4
|
Fan H, Liu S, Jiao B, Liang X. Low‑dose ionizing radiation attenuates high glucose‑induced hepatic apoptosis and immune factor release via modulation of a miR‑155‑SOCS1 axis. Mol Med Rep 2023; 28:171. [PMID: 37503757 PMCID: PMC10433713 DOI: 10.3892/mmr.2023.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Diabetic liver injury (DLI) can result in several diseases of the liver, including steatohepatitis, liver fibrosis, cirrhosis, and liver cancer. Low‑dose ionizing radiation (LDIR) has hormetic effects in normal/disease conditions. However, whether LDIR has a beneficial effect on DLI has not been assessed previously. MicroRNA (miR)‑155 and its target gene suppressor of cytokine signaling 1 (SOCS1) play critical roles in modulating hepatic proliferation, apoptosis, and immunity. However, whether a miR‑155‑SOCS1 axis is involved in high glucose (HG) induced hepatic damage remains to be determined. In the present study, mouse hepatocyte AML12 cells were treated with 30 mM glucose (HG), 75 mGy X‑ray (LDIR), or HG plus LDIR. The expression levels of miR‑155 and SOCS1 were determined by reverse transcription‑quantitative PCR and western blotting. Additionally, apoptosis was measured using flow cytometry. The release of inflammatory factors, including TNF‑α, IL‑1β, IL‑6, IL‑10, and IFN‑γ, after HG and/or LDIR treatment was detected by ELISA. The results showed that HG may induce hepatic apoptosis by upregulating the levels of miR‑155 and downregulating the levels of SOCS1. HG also stimulated the secretion of TNF‑α, IL‑1β, IL‑6, and IL‑10. However, LDIR blocked the HG‑induced activation of a miR‑155‑SOCS1 axis and suppressed the release of inflammatory factors. These results indicated that a miR‑155‑SOCS1 axis plays a role in HG‑induced liver injury, and LDIR may exert a hepatoprotective effect by regulating the miR‑155‑SOCS1 axis.
Collapse
Affiliation(s)
- Hongqiong Fan
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shanshan Liu
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Benzheng Jiao
- Department of Nuclear Medicine, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyue Liang
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Wu Y, Hong Q, Lu F, Zhang Z, Li J, Nie Z, He B. The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis. Mol Diagn Ther 2023; 27:283-301. [PMID: 36939982 DOI: 10.1007/s40291-023-00641-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND MicroRNA-155 has been discussed as a biomarker in cancer diagnosis and prognosis. Although relevant studies have been published, the role of microRNA-155 remains uncertain because of insufficient data. METHODS We conducted a literature search in PubMed, Embase, and Web of Science databases to obtain relevant articles and extract data to evaluate the role of microRNA-155 in cancer diagnosis and prognosis. RESULTS The pooled results showed that microRNA-155 presented a remarkable diagnostic value in cancers (area under the curve = 0.90, 95% confidence interval (CI 0.87-0.92; sensitivity = 0.83, 95% CI 0.79-0.87; specificity = 0.83, 95% CI 0.80-0.86), which was maintained in the subgroups stratified by ethnicity (Asian and Caucasian), cancer types (breast cancer, lung cancer, hepatocellular carcinoma, leukemia, and pancreatic ductal adenocarcinoma), sample types (plasma, serum, tissue), and sample size (n >100 and n <100). In prognosis, a combined hazard ratio (HR) showed that microRNA-155 was significantly associated with poor overall survival (HR = 1.38, 95% CI 1.25-1.54) and recurrence-free survival (HR = 2.13, 95% CI 1.65-2.76), and was boundary significant with poor progression-free survival (HR = 1.20, 95% CI 1.00-1.44), but not significant with disease-free survival (HR = 1.14, 95% CI 0.70-1.85). Subgroup analyses in overall survival showed that microRNA-155 was associated with poor overall survival in the subgroups stratified by ethnicity and sample size. However, the significant association was maintained in cancer types subgroups of leukemia, lung cancer, and oral squamous cell carcinoma, but not in colorectal cancer, hepatocellular carcinoma, and breast cancer, and was maintained in sample types subgroups of bone marrow and tissue, but not in plasma and serum. CONCLUSIONS Results from this meta-analysis demonstrated that microRNA-155 was a valuable biomarker in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Qiwei Hong
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Fang Lu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Zhongqiu Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, Jiangsu, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Saller J, White D, Hough B, Yoder S, Whiting J, Chen DT, Magliocco A, Coppola D. An miRNA Signature Predicts Grading of Pancreatic Neuroendocrine Neoplasms. Cancer Genomics Proteomics 2023; 20:154-164. [PMID: 36870693 PMCID: PMC9989673 DOI: 10.21873/cgp.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND/AIM Grading pancreatic neuroendocrine neoplasms (PNENs) via mitotic rate and Ki-67 index score is complicated by interobserver variability. Differentially expressed miRNAs (DEMs) are useful for predicting tumour progression and may be useful for grading. PATIENTS AND METHODS Twelve PNENs were selected. Four patients had grade (G) 1 pancreatic neuroendocrine tumours (PNETs); 4 had G2 PNETs; and 4 had G3 PNENs (2 PNETs and 2 pancreatic neuroendocrine carcinomas). Samples were profiled using the miRNA NanoString Assay. RESULTS There were 6 statistically significant DEMs between different grades of PNENs. MiR1285-5p was the sole miRNA differentially expressed (p=0.03) between G1 and G2 PNETs. Six statistically significant DEMs (miR135a-5p, miR200a-3p, miR3151-5p, miR-345-5p, miR548d-5p and miR9-5p) (p<0.05) were identified between G1 PNETs and G3 PNENs. Finally, 5 DEMs (miR155-5p, miR15b-5p, miR222-3p, miR548d-5p and miR9-5p) (p<0.05) were identified between G2 PNETs and G3 PNENs. CONCLUSION The identified miRNA candidates are concordant with their patterns of dysregulation in other tumour types. The reliability of these DEMs as discriminators of PNEN grades support further investigations using larger patient populations.
Collapse
Affiliation(s)
- James Saller
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Daley White
- Department of Biomedical Library, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Brooke Hough
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Sean Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Junmin Whiting
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Dung-Tsa Chen
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | | | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.; .,Department of Pathology Florida Digestive Health Specialists, Lakewood Ranch, FL, U.S.A
| |
Collapse
|
7
|
Neutrophil Transcriptional Deregulation by the Periodontal Pathogen Fusobacterium nucleatum in Gastric Cancer: A Bioinformatic Study. DISEASE MARKERS 2022; 2022:9584507. [PMID: 36033825 PMCID: PMC9410804 DOI: 10.1155/2022/9584507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Background Infection with the periodontal pathogen Fusobacterium nucleatum (F. nucleatum) has been associated with gastric cancer. The present study is aimed at uncovering the putative biological mechanisms underlying effects of F. nucleatum–mediated neutrophil transcriptional deregulation in gastric cancer. Materials and Methods A gene expression dataset pertaining to F. nucleatum-infected human neutrophils was utilized to identify differentially expressed genes (DEGs) using the GEO2R tool. Candidate genes associated with gastric cancer were sourced from the “Candidate Cancer Gene Database” (CCGD). Overlapping genes among these were identified as link genes. Functional profiling of the link genes was performed using “g:Profiler” tool to identify enriched Gene Ontology (GO) terms, pathways, miRNAs, transcription factors, and human phenotype ontology terms. Protein-protein interaction (PPI) network was constructed for the link genes using the “STRING” tool, hub nodes were identified as key candidate genes, and functionally enriched terms were determined. Results The gene expression dataset GEO20151 was downloaded, and 589 DEGs were identified through differential analysis. 886 candidate gastric cancer genes were identified in the CGGD database. Among these, 36 overlapping genes were identified as the link genes. Enriched GO terms included molecular function “enzyme building,” biological process “protein folding,'” cellular components related to membrane-bound organelles, transcription factors ER71 and Sp1, miRNAs miR580 and miR155, and several human phenotype ontology terms including squamous epithelium of esophagus. The PPI network contained 36 nodes and 53 edges, where the top nodes included PH4 and CANX, and functional terms related to intracellular membrane trafficking were enriched. Conclusion F nucleatum-induced neutrophil transcriptional activation may be implicated in gastric cancer via several candidate genes including DNAJB1, EHD1, IER2, CANX, and PH4B. Functional analysis revealed membrane-bound organelle dysfunction, intracellular trafficking, transcription factors ER71 and Sp1, and miRNAs miR580 and miR155 as other candidate mechanisms, which should be investigated in experimental studies.
Collapse
|
8
|
Mahboobi R, Fallah F, Yadegar A, Dara N, Kazemi Aghdam M, Asgari B, Hakemi-Vala M. Expression analysis of miRNA-155 level in Helicobacter pylori related inflammation and chronic gastritis. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:495-502. [PMID: 36721512 PMCID: PMC9867648 DOI: 10.18502/ijm.v14i4.10235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Helicobacter pylori, is a major etiologic agent associated with gastritis. There is more evidence of noncoding microRNAs (miRs) dysregulation in gastrointestinal diseases, including inflammation caused by Helicobacter pylori. Also, the classification of gastrointestinal malignancies using the miRs profile is better than the protein profile. MiRNA-155(miRNA-155) among other miRs plays an important role in control of inflammation and gastric malignancy, so it can be remarkable prognosis marker of gastric cancer in the phase of chronic gastritis. The aim of this study was to compare the expression of miRNA-155 in gastric biopsy and serum samples of adult patients with chronic gastritis. Materials and Methods Biopsy and blood samples were collected from endoscopy candidates at Taleghani hospital, Tehran, during 2019. H. pylori infection was detected using histology, culture and molecular PCR methods. Based on cagA and vacA genotyping, the toxicity of H. pylori isolates were determined. After RNA extraction, the expression rate of miRNA-155 was evaluated by real-time polymerase chain reaction (RT-PCR) in gastric tissue and serum of adults infected by H. pylori (n = 30) compared with control group without infection (n = 20). RNU6 housekeeping miRNA were used as endogenous control and statistical analyses were performed using SPSS, ANOVA and Student's t-test. Results miRNA-155 expression in H. pylori infected adult patients increased significantly by 5.61 and 10.11 fold in serum and tissue respectively, compared to that observed in the control group. Evaluation of miRNA-155 expression pattern in relation to bacterial virulence factors showed that the increase in miRNA-155 expression is independent of CagA and VacA toxins. Conclusion According to the differential expression patterns of miRNA-155 in serum samples of the infected adult patients, miRNA-155 has the potential to evaluate as chronic gastritis marker.
Collapse
Affiliation(s)
- Ramina Mahboobi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Fatemeh Fallah, Ph.D, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-2123872556 Fax: +98-2122439964
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghi Dara
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Maryam Kazemi Aghdam
- Pediatric Pathology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Mojdeh Hakemi-Vala, Ph.D, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-2123872556 Fax: +98-2122439964
| |
Collapse
|
9
|
Helicobacter pylori CagA Protein Regulating the Biological Characteristics of Gastric Cancer through the miR-155-5p/SMAD2/SP1 axis. Pathogens 2022; 11:pathogens11080846. [PMID: 36014967 PMCID: PMC9414533 DOI: 10.3390/pathogens11080846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Helicobacter pylori (Hp) is a grade Ι carcinogen of gastric cancer (GC), and its high infection rate seriously affects human health. Cytotoxin-associated gene A (CagA) plays a key role in the carcinogenesis of Hp as one of its main virulence factors. miR-155-5p is abnormally expressed in patients with GC, associated with the occurrence and development of cancer. However, little is known about the association between CagA and miR-155-5p. (1) Background: This study explored the association and mechanism of CagA and miR-155-5p in GC. (2) Methods: The CagA sequence was obtained from the NCBI. After sequence optimization, it was connected to the pcDNA3.1 vector to construct a CagA eukaryotic expression plasmid (pcDNA-CagA). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to investigate the expression of miR-155-5p and CagA in GC cells. The function of CagA on GC cells was detected by CCK8, wound healing, and Transwell assays. Similarly, the function of miR-155-5p was also studied through the above functional experiments after the miR-155-5p overexpression and knockdown models had successfully been constructed. The associations among CagA, miR-155-5p, and SMAD2/SP1 were evaluated using RNA immunoprecipitation (RIP) and rescue experiments. (3) Results: The expression of miR-155-5p was significantly reduced in GC cells, and the expression of miR-155-5p was further reduced after CagA induction. Both overexpressed CagA and knockdown miR-155-5p cell models enhanced malignant transformation, whereas overexpressed miR-155-5p inhibited malignant transformation in vitro. The function of miR-155-5p on GC cells could be influenced by CagA. We also found that the influence of miR-155-5p on SMAD2 and SP1 could be regulated by CagA. (4) Conclusions: CagA potentially regulates the biological function of GC cells through the miR-155-5p/SMAD2/SP1 axis. miR-155-5p could be a therapeutic target for GC related to CagA.
Collapse
|
10
|
Wang S, Fu Y, Kuerban K, Liu J, Huang X, Pan D, Chen H, Zhu Y, Ye L. Discoidin domain receptor 1 is a potential target correlated with tumor invasion and immune infiltration in gastric cancer. Front Immunol 2022; 13:933165. [PMID: 35935941 PMCID: PMC9353406 DOI: 10.3389/fimmu.2022.933165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) has been demonstrated to be able to promote tumor invasion and metastasis and being closely related to tumor immune infiltration. However, DDR1 has rarely been studied in gastric cancer. Here, we primarily evaluated DDR1 expression in gastric cancer and its cell lines using multiple databases. Subsequently, the cancer prognosis was investigated in relation to DDR1 expression. After analysis, we discovered that DDR1 was highly expressed and significantly connected with poor prognosis in gastric cancer. To comprehensively understand the molecular mechanism of DDR1, we explored genes and proteins interacting with DDR1 in gastric cancer using databases. Additionally, we found that the expression level of DDR1 was inversely correlated with immune infiltration and significantly relative to various immune cell markers. Overall, DDR1 was implicated in invasion, metastasis, and immune infiltration of gastric cancer. Inhibition of DDR1 may have the potential to alleviate the strong invasiveness and metastasis of advanced gastric cancer. Meanwhile, immune exclusion by DDR1 may also provide a new strategy for improving the efficacy of immune checkpoints inhibitors (ICIs), such as programmed cell death protein 1 (PD-1) antibody.
Collapse
Affiliation(s)
- Songna Wang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Fu
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
| | - Kudelaidi Kuerban
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiayang Liu
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Danjie Pan
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Huaning Chen
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Li Ye
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Li Ye,
| |
Collapse
|
11
|
Kohli H, Childs B, Sullivan TB, Shevtsov A, Burks E, Kalantzakos T, Rieger-Christ K, Vanni AJ. Differential expression of miRNAs involved in biological processes responsible for inflammation and immune response in lichen sclerosus urethral stricture disease. PLoS One 2021; 16:e0261505. [PMID: 34910765 PMCID: PMC8673646 DOI: 10.1371/journal.pone.0261505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/05/2021] [Indexed: 11/27/2022] Open
Abstract
Purpose To better understand the pathophysiology of lichen sclerosus (LS) urethral stricture disease (USD), we aimed to investigate expression profiles of microRNAs (miRNAs) in tissue samples from men undergoing urethroplasty. Methods Urethral stricture tissue was collected from 2005–2020. Histologic features diagnostic of LS were the basis of pathologic evaluation. Foci of areas diagnostic for LS or non-LS strictures were chosen for RNA evaluation. In an initial screening analysis, 13 LS urethral strictures and 13 non-LS strictures were profiled via miRNA RT-qPCR arrays for 752 unique miRNA. A validation analysis of 23 additional samples (9 LS and 14 non-LS) was performed for 15 miRNAs. Statistical analyses were performed using SPSS v25. Gene Ontology (GO) analysis was performed using DIANA-mirPath v. 3.0. Results In the screening analysis 143 miRNAs were detected for all samples. 27 were differentially expressed between the groups (false discovery p-value <0.01). 15 of these miRNAs individually demonstrated an area under the curve (AUC)>0.90 for distinguishing between between LS and non-LS strictures. 11-fold upregulation of MiR-155-5p specifically was found in LS vs. non-LS strictures (p<0.001, AUC = 1.0). In the validation analysis, 13 of the 15 miRNAs tested were confirmed to have differential expression (false discovery p-value <0.10). Conclusions To our knowledge this is the first study evaluating miRNA expression profiles in LS and non-LS USD. We identified several miRNAs that are differentially expressed in USD caused by LS vs other etiologies, which could potentially serve as biomarkers of LS USD. The top eight differentially expressed miRNAs have been linked to immune response processes as well as involvement in wound healing, primarily angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Harjivan Kohli
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Brandon Childs
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Travis B. Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Artem Shevtsov
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric Burks
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas Kalantzakos
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Kimberly Rieger-Christ
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Alex J. Vanni
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
HDAC6 Negatively Regulates miR-155-5p Expression to Elicit Proliferation by Targeting RHEB in Microvascular Endothelial Cells under Mechanical Unloading. Int J Mol Sci 2021; 22:ijms221910527. [PMID: 34638868 PMCID: PMC8508889 DOI: 10.3390/ijms221910527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain microvascular endothelial cell proliferation and downregulated histone deacetylase 6 (HDAC6) expression. Furthermore, HDAC6 promoted microvascular endothelial cell proliferation and attenuated the inhibition of proliferation caused by clinorotation unloading. To comprehensively identify microRNAs (miRNAs) that are regulated by HDAC6, we analyzed differential miRNA expression in microvascular endothelial cells after transfection with HDAC6 siRNA and selected miR-155-5p, which was the miRNA with the most significantly increased expression. The ectopic expression of miR-155-5p inhibited microvascular endothelial cell proliferation and directly downregulated Ras homolog enriched in brain (RHEB) expression. Moreover, RHEB expression was downregulated under mechanical unloading and was essential for the miR-155-5p-mediated promotion of microvascular endothelial cell proliferation. Taken together, these results are the first to elucidate the role of HDAC6 in unloading-induced cell growth inhibition through the miR-155-5p/RHEB axis, suggesting that the HDAC6/miR-155-5p/RHEB pathway is a specific target for the preventative treatment of cardiovascular deconditioning.
Collapse
|
13
|
Wen A, Luo L, Du C, Luo X. Long non-coding RNA miR155HG silencing restrains ovarian cancer progression by targeting the microRNA-155-5p/tyrosinase-related protein 1 axis. Exp Ther Med 2021; 22:1237. [PMID: 34539833 PMCID: PMC8438675 DOI: 10.3892/etm.2021.10672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) is the third commonest gynecological malignancy worldwide. The long non-coding (lnc)RNA microRNA (miR)155HG functions as an oncogene in different human cancers. However, the function and molecular mechanism of miR155HG in OC remain elusive. The present study indicated that the expression levels of miR155HG and tyrosinase-related protein 1 (TYRP1) were significantly increased, whereas that of miR155-5p was decreased in OC tissues and cells, as detected by real-time quantitative polymerase chain reaction. It was demonstrated that knockdown of miR155HG markedly inhibited OC cell viability, migration and invasion while promoting apoptosis, as indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, Transwell and western blot assays. Mechanistically, it was revealed that miR155HG and TYRP1 were both targeted by miR-155-5p with complementary binding sites in the 3' untranslated region. A dual-luciferase reporter assay was used to confirm the targeting relationship between miR155HG, miR-155-5p and TYRP1. In addition, the interaction between miR155HG and miR-155-5p was further demonstrated by radioimmunoprecipitation and pull-down assays. In addition, feedback approaches determined that miR-155-5p inhibition or TYRP1 overexpression markedly reversed the inhibitory effects of miR155HG knockdown on OC cell viability, migration and invasion as well as weakened the promotive effect of miR155HG knockdown on OC cell apoptosis. Thus, miR155HG silencing inhibited the malignant biological behavior of OC cells by targeting the miR-155-5p/TYRP1 axis. The present study provides novel insights into the underlying mechanism of OC progression.
Collapse
Affiliation(s)
- Aiping Wen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Le Luo
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chengchao Du
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xin Luo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
14
|
Characterization of microRNA expression in B cells derived from Japanese black cattle naturally infected with bovine leukemia virus by deep sequencing. PLoS One 2021; 16:e0256588. [PMID: 34506539 PMCID: PMC8432782 DOI: 10.1371/journal.pone.0256588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a malignant B cell lymphoma. However, the mechanisms of BLV-associated lymphomagenesis remain poorly understood. Here, after deep sequencing, we performed comparative analyses of B cell microRNAs (miRNAs) in cattle infected with BLV and those without BLV. In BLV-infected cattle, BLV-derived miRNAs (blv-miRNAs) accounted for 38% of all miRNAs in B cells. Four of these blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) had highly significant positive correlations with BLV proviral load (PVL). The read counts of 90 host-derived miRNAs (bta-miRNAs) were significantly down-regulated in BLV-infected cattle compared to those in uninfected cattle. Only bta-miR-375 had a positive correlation with PVL in BLV-infected cattle and was highly expressed in the B cell lymphoma tissue of EBL cattle. There were a few bta-miRNAs that correlated with BLV tax/rex gene expression; however, BLV AS1 expression had a significant negative correlation with many of the down-regulated bta-miRNAs that are important for tumor development and/or tumor suppression. These results suggest that BLV promotes lymphomagenesis via AS1 and blv-miRNAs, rather than tax/rex, by down-regulating the expression of bta-miRNAs that have a tumor-suppressing function, and this downregulation is linked to increased PVL.
Collapse
|
15
|
Ouyang J, Xie Z, Lei X, Tang G, Gan R, Yang X. Clinical crosstalk between microRNAs and gastric cancer (Review). Int J Oncol 2021; 58:7. [PMID: 33649806 PMCID: PMC7895535 DOI: 10.3892/ijo.2021.5187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, there were over 1 million new gastric cancer (GC) patients in 2018 and GC has become the sixth most common cancer worldwide. GC caused 783,000 deaths worldwide in 2018, making it the third most deadly cancer type. miRNAs are short (~22 nucleotides in length) non‑coding RNA molecules, which can regulate gene expression passively at a post‑transcriptional level. There are more and more in‑depth studies on miRNAs. There are numerous conclusive evidences that there is an inseparable link between miRNAs and GC. miRNAs can affect the entire process of GC, including the oncogenesis, development, diagnosis, treatment and prognosis of GC. Although many miRNAs have been linked to GC, few can be applied to clinical practice. This review takes the clinical changes of GC as a clue and summarizes the miRNAs related to GC that have confirmed the mechanism of action in the past three years. Through in‑depth study and understanding of the mechanism of those miRNAs, we predict their possible clinical uses, and suggest some new insights to overcome GC.
Collapse
Affiliation(s)
- Jing Ouyang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, University of South China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, University of South China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, University of South China
| | - Runliang Gan
- Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, University of South China
| |
Collapse
|
16
|
Shen Y, Zhang M, Da L, Huang W, Zhang C. Circular RNA circ_SETD2 represses breast cancer progression via modulating the miR-155-5p/SCUBE2 axis. Open Med (Wars) 2020; 15:940-953. [PMID: 33336052 PMCID: PMC7712504 DOI: 10.1515/med-2020-0223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/03/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer deaths in women worldwide. Circular RNA circ_SETD2 (circ_SETD2), also termed as hsa_circ_0065173, is reported to be abnormally expressed in BC. Nevertheless, the role and mechanism of circ_SETD2 in BC are unclear. Expression of circ_SETD2, miR-155-5p, and SCUBE2 mRNA was evaluated by quantitative real-time polymerase chain reaction. Cell cycle progression, proliferation, apoptosis, migration, and invasion were determined by flow cytometry, MTT, and transwell assays. The relationship between circ_SETD2 or SCUBE2 and miR-155-5p was verified through a dual-luciferase reporter assay. The role of circ_SETD2 in BC in vivo was confirmed by a xenograft assay. circ_SETD2 and SCUBE2 were downregulated, while miR-155-5p was upregulated in BC tissues and cells. Both circ_SETD2 and SCUBE2 elevation arrested cell cycle progression, inhibited cell proliferation, migration, and invasion, and accelerated cell apoptosis in BC cells. Moreover, circ_SETD2 upregulation repressed BC growth in vivo. Importantly, circ_SETD2 modulated SCUBE2 expression through competitively binding to miR-155-5p in BC cells. Also, the inhibitory impacts of circ_SETD2 enhancement on the malignant behavior of BC cells were restored by miR-155-5p overexpression. Besides, SCUBE2 silencing abolished miR-155-5p downregulation mediated effects on the malignant behavior of BC cells. Therefore, circ_SETD2 curbed BC progression via upregulating SCUBE2 via binding to miR-155-5p.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Oncology, High-tech District of the First Affiliated Hospital of Anhui Medical University, No.120 Wan Shui Road, Hefei, Anhui, 230022, China
| | - Mengmeng Zhang
- Department of Oncology, High-tech District of the First Affiliated Hospital of Anhui Medical University, No.120 Wan Shui Road, Hefei, Anhui, 230022, China
| | - Liangshan Da
- Department of Oncology, High-tech District of the First Affiliated Hospital of Anhui Medical University, No.120 Wan Shui Road, Hefei, Anhui, 230022, China
| | - Wei Huang
- Department of Oncology, High-tech District of the First Affiliated Hospital of Anhui Medical University, No.120 Wan Shui Road, Hefei, Anhui, 230022, China
| | - Congjun Zhang
- Department of Oncology, High-tech District of the First Affiliated Hospital of Anhui Medical University, No.120 Wan Shui Road, Hefei, Anhui, 230022, China
| |
Collapse
|
17
|
Amato G, Vita F, Quattrocchi P, Minciullo PL, Pioggia G, Gangemi S. Involvement of miR-142 and miR-155 in Non-Infectious Complications of CVID. Molecules 2020; 25:molecules25204760. [PMID: 33081305 PMCID: PMC7587593 DOI: 10.3390/molecules25204760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Common variable immunodeficiency (CVID) is the most prevalent antibody impairment. It is characterized by failure in immunoglobulin and protective antibody generation and defined by an increased tendency toward bacterial infections, autoimmunity, and malignancy. Most CVID diagnoses do not follow a classical Mendelian pattern of inheritance. In recent years, CVID has been considered an epigenetic phenomenon in the majority of cases, overtaking previous monogenetic and/or polygenetic theories. The aim of this study was to review the role of microRNAs (miRNAs) in CVID, focusing on the involvement of the same miRNAs in various non-infectious clinical complications of CVID, mainly autoimmunity and/or cancer. MATERIALS AND METHODS A bibliographic search of the scientific literature was carried out independently by two researchers in scientific databases and search engines. The MeSH terms "microRNAs" and "common variable immunodeficiency" were used. All research articles from inception to May 2020 were considered. RESULTS The literature data showed the involvement of two miRNAs in primary immunodeficiency: miR-142 and miR-155. Both of these miRNAs have been investigated through mice models, in which miR-142 and miR-155 were deleted. These knock-out (KO) mice models showed phenotypic analogies to CVID patients with hypogammaglobulinemia, adaptive immunodeficiency, polyclonal proliferation, lung disease, and enteric inflammation. miR-142 and miR-155 have been found to be involved in the following autoimmune and neoplastic clinical complications of CVID: Gastric cancer, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, natural killer/Tcell lymphoma (NKTCL), and immune thrombocytopenia. CONCLUSIONS miR-142 and miR-155 deregulation leads to similar CVID phenotypesin KO mice models. Although no data are available on the involvement of these miRNAs in human CVID, their dysregulation has been detected in human CVID comorbidities. The literature data show that miRNA sequences in murine models are comparable to those in humans; therefore, miR-142 and miR-155 involvement in human CVID could be hypothesized.
Collapse
Affiliation(s)
- Giuliana Amato
- Operative Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.A.); (F.V.); (P.Q.); (P.L.M.); (S.G.)
| | - Federica Vita
- Operative Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.A.); (F.V.); (P.Q.); (P.L.M.); (S.G.)
| | - Paolina Quattrocchi
- Operative Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.A.); (F.V.); (P.Q.); (P.L.M.); (S.G.)
| | - Paola Lucia Minciullo
- Operative Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.A.); (F.V.); (P.Q.); (P.L.M.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
- Correspondence:
| | - Sebastiano Gangemi
- Operative Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.A.); (F.V.); (P.Q.); (P.L.M.); (S.G.)
| |
Collapse
|
18
|
Yao LY, Ma J, Zeng XM, Ou-Yang J. MicroRNA-155-5p inhibits the invasion and migration of prostate cancer cells by targeting SPOCK1. Oncol Lett 2020; 20:353. [PMID: 33123264 PMCID: PMC7586282 DOI: 10.3892/ol.2020.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to determine the effect of microRNA (miR)-155-5p on the expression of testican-1 (SPOCK1) and the invasion and migration of prostate cancer cells in vitro. Bioinformatics analysis and molecular biology assays revealed that SPOCK1 may be a direct target gene of miR-155-5p. In addition, a negative correlation was identified between SPCOK1 and miR-155-5p expression in prostate tumor tissues and cell lines. miR-155-5p mimic transfection inhibited SPOCK1 expression in PC3 cells and decreased cell migration and invasion abilities, while the expression of vimentin, N-cadherin, E-cadherin, β-catenin, matrix metalloproteinase (MMP)3 and MMP9 was upregulated. In summary, SPOCK1 was found to be a target gene of miR155-5p in prostate cancer, and miR-155-5p acts as a tumor-suppressor gene and may inhibit SPOCK1-mediated prostate cancer progression.
Collapse
Affiliation(s)
- Lin-Ya Yao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ma
- Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Xue-Ming Zeng
- Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ou-Yang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
19
|
Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek's disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Vet Res 2020; 16:23. [PMID: 31992293 PMCID: PMC6988224 DOI: 10.1186/s12917-020-2239-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Marek's disease (MD) is caused by the oncogenic Marek's disease virus (MDV), and is a highly contagious avian infection with a complex underlying pathology that involves lymphoproliferative neoplasm formation. MicroRNAs (miRNAs) act as oncogenes or tumor suppressors in most cancers. The gga-miR-155 is downregulated in the MDV-infected chicken tissues or lymphocyte lines, although its exact role in tumorigenesis remains unclear. The aim of this study was to analyze the effects of gga-miR-155 on the proliferation, apoptosis and invasiveness of an MDV-transformed lymphocyte line MSB1 and elucidate the underlying mechanisms. RESULTS The expression level of gga-miR-155 was manipulated in MSB1 cells using specific mimics and inhibitors. While overexpression of gga-miR-155 increased proliferation, decreased the proportion of G1 phase cells relative to that in S and G2 phases, reduced apoptosis rates and increased invasiveness. However, its downregulation had the opposite effects. Furthermore, gga-miR-155 directly targeted the RORA gene and downregulated its expression in the MSB1 cells. CONCLUSION The gga-miR-155 promotes the proliferation and invasiveness of the MDV-transformed lymphocyte line MSB1 and inhibits apoptosis by targeting the RORA gene.
Collapse
|
20
|
Zare A, Alipoor B, Omrani MD, Zali MR, Malekpour Alamdari N, Ghaedi H. Decreased miR-155-5p, miR-15a, and miR-186 Expression in Gastric Cancer Is Associated with Advanced Tumor Grade and Metastasis. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 31103022 PMCID: PMC6661124 DOI: 10.29252/.23.5.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Gastric cancer (GC) is one of the most prevalent cancers with a high rate of mortality in the world. In recent years, microRNAs (miRNAs) have been proposed to be involved in GC development. In this study, we aimed at investigating differential expression level of miR-155-5p, miR-15a, miR-15b, and miR-186 in GC. Methods For this research, we used qPCR to investigate miR-15b, miR-155, miR-15a, and miR-186 expression levels in a total of 29 normal gastric tissue, 45 gastric dysplasia, and 39 GC samples. Results We showed significant down-regulation of miR-155-5p (p = 0.0018), miR-15a (p = 0.0159), and miR-186 (p = 0.0005) expression in GC tissue. Conclusion This study provides evidence for deregulated expression of miR155-5p, miR-186, and miR-15a in GC and is providing new insights into the potential implication of these miRNAs in the pathogenesis of GC.
Collapse
Affiliation(s)
- Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Urogenital Stem Cell Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Corresponding Authors: Mir Davood Omrani ,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail: , Hamid Ghaedi , Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail:
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Malekpour Alamdari
- Department of General Surgery, Clinical Research and Development Unit at Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Corresponding Authors: Mir Davood Omrani ,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail: , Hamid Ghaedi , Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak st., Shahid Chamran Highway, Tehran, Iran. Tel.: (+98-21) 22439982, E-mail:
| |
Collapse
|
21
|
Alwhaibi A, Gao F, Artham S, Hsia BM, Mondal A, Kolhe R, Somanath PR. Modulation in the microRNA repertoire is responsible for the stage-specific effects of Akt suppression on murine neuroendocrine prostate cancer. Heliyon 2018; 4:e00796. [PMID: 30238065 PMCID: PMC6143703 DOI: 10.1016/j.heliyon.2018.e00796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/12/2023] Open
Abstract
Recent studies indicate a stage-specific, differential role for the oncogene Akt on various cancers. In prostate cancer (PCa), suppression of Akt activity in the advanced stages promoted transforming growth factor-β (TGFβ) pathway-mediated epithelial-to-mesenchymal transition (EMT) and metastasis to the lungs. In the current study, we performed Affymetrix analysis to compare the expression profile of microRNAs in the mouse prostate tissues collected at the prostatic inter-epithelial neoplasia (PIN) stage from Transgenic adenocarcinoma of the mouse (TRAMP)/Akt1+/+ versus TRAMP/Akt1–/– mice, and at the advanced stage from TRAMP/Akt1+/+ mice treated with triciribine (Akt inhibitor) versus DMSO-treated control. Our analysis demonstrates that in the early stage, Akt1 in the TRAMP prostate tumors express a set of miRNAs responsible for regulating cancer cell survival, proliferation, and tumor growth, whereas, in the advanced stages, a different set of miRNAs that promote EMT and cancer metastasis is expressed. Our study has identified novel Akt-regulated signature microRNAs in the early and advanced PCa and demonstrates their differential effects on PCa growth and metastasis.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Fei Gao
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Bernard M Hsia
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ashis Mondal
- Department of Pathology, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|