1
|
Chen F, Zhang W, Gao X, Yuan H, Liu K. The Role of Small Interfering RNAs in Hepatocellular Carcinoma. J Gastrointest Cancer 2024; 55:26-40. [PMID: 37432548 DOI: 10.1007/s12029-023-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a primary liver cancer with high mortality, is the most common malignant tumor in the world. Currently, the effect of routine treatment is poor, especially for this kind of cancer with strong heterogeneity and late detection. In the past decades, the researches of gene therapy for HCC based on small interfering RNA have blossomed everywhere. This is a promising therapeutic strategy, but the application of siRNA is limited by the discovery of effective molecular targets and the delivery system targeting HCC. As the deepening of research, scientists have developed many effective delivery systems and found more new therapeutic targets. CONCLUSIONS This paper mainly reviews the research on HCC treatment based on siRNA in recent years, and summarizes and classifies the HCC treatment targets and siRNA delivery systems.
Collapse
Affiliation(s)
- Feng Chen
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Wang Zhang
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinran Gao
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Yuan
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Zheng L, Shen CL, Li JM, Ma YL, Yan N, Tian XQ, Zhao YZ. Assessment of the Preventive Effect Against Diabetic Cardiomyopathy of FGF1-Loaded Nanoliposomes Combined With Microbubble Cavitation by Ultrasound. Front Pharmacol 2020; 10:1535. [PMID: 31998132 PMCID: PMC6967235 DOI: 10.3389/fphar.2019.01535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Acidic fibroblast growth factor (FGF1) has great potential in preventing diabetic cardiomyopathy. This study aimed to evaluate the preventive effect of FGF1-loaded nanoliposomes (FGF1-nlip) combined with ultrasound-targeted microbubble destruction (UTMD) on diabetic cardiomyopathy (DCM) using ultrasound examination. Nanoliposomes encapsulating FGF1 were prepared by reverse phase evaporation. DM model rats were established by intraperitoneal injection of streptozotocin (STZ), and different forms of FGF1 (FGF1 solution, FGF1-nlip, and FGF1-nlip+UTMD) were used for a 12-week intervention. According to the transthoracic echocardiography and velocity vector imaging (VVI) indexes, the LVEF, LVFS, and VVI indexes (Vs, Sr, SRr) in the FGF1-nlip+UTMD group were significantly higher than those in the DM model group and other FGF1 intervention groups. From the real-time myocardial contrast echocardiography (RT-MCE) indexes, the FGF1-nlip+UTMD group A and A×β showed significant differences from the DM model group and other FGF1 intervention groups. Cardiac catheter hemodynamic testing, CD31 immunohistochemical staining, and electron microscopy also confirmed the same conclusion. These results confirmed that the abnormalities, including myocardial dysfunction and perfusion impairment, could be suppressed to different extents by the twice weekly FGF1 treatments for 12 consecutive weeks (free FGF1, FGF1-nlip, and FGF1-nlip+UTMD), with the strongest improvements observed in the FGF1-nlip+UTMD group. In conclusion, the VVI and RT-MCE techniques can detect left ventricular systolic function and perfusion changes in DM rats, providing a more effective experimental basis for the early detection and treatment evaluation of DCM, which is of great significance for the prevention of DCM.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Ultrasonography, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Department of Ultrasonography of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.,Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuan-Li Shen
- Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Min Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Lei Ma
- Department of Ultrasonography, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Department of Ultrasonography of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Yan
- Department of Ultrasonography, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Department of Ultrasonography of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Qiao Tian
- Department of Ultrasonography, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Department of Ultrasonography of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of 6 Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|