1
|
Cao L, Ma X, Zhang J, Yang C, Rong P, Wang W. PTEN-related risk classification models for predicting prognosis and immunotherapy response of hepatocellular carcinoma. Discov Oncol 2023; 14:134. [PMID: 37470852 DOI: 10.1007/s12672-023-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION PTEN often mutates in tumors, and its manipulation is suggested to be used in the development of preclinical tools in cancer research. This study aims to explore the biological impact of gene expression related to PTEN mutations and to develop a prognostic classification model based on the heterogeneity of PTEN expression, and to explore its sensitivity as an indicator of prognosis and molecular and biologic features in hepatocellular carcinoma (HCC). MATERIAL AND METHODS RNA-seq data and mutation data of the LIHC cohort sample downloaded from The Cancer Genome Atlas (TCGA). The HCC samples were grouped according to the mean expression of PTEN, and the tumor microenvironment (TME) was evaluated by ESTIMATE and ssGSEA. The prognostic classification model related to PTEN were constructed by COX and LASSO regression analysis of differentially expressed genes (DEGs) between PTEN-high and -low expressed group. RESULTS The expression of PTEN was affected by copy number variation (CNV) and negatively correlated with immune score, IFNγ score and immune cell infiltration. 1281 DEGs were detected between PTEN-high and PTEN-low expressed group, 8 of the DEGs were finally filtered for developing a prognosis classification model. This model showed better prognostic value than other clinicopathological parameters, and the prediction accuracy of prognosis and ICB treatment for immunotherapy cohorts was better than that of TIDE model. CONCLUSIONS This study demonstrated the effect of CNV on PTEN expression and the negative immune correlation of PTEN, and constructed a classification model related to the expression of PTEN, which was of guiding significance for evaluating prognostic results of HCC patients and ICB treatment response of cancer immunotherapy cohorts.
Collapse
Affiliation(s)
- Lu Cao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
- Postdoctoral Research Station of Special Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
| | - Juan Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
| | - Cejun Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China.
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China.
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China.
| |
Collapse
|
2
|
Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, Fu Y, Zhai A, Bi C. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:814-826. [PMID: 31958697 PMCID: PMC7005423 DOI: 10.1016/j.omtn.2019.11.034] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have been reported to hold promise to accelerate the wound-healing process in diabetic foot ulcer (DFU) due to the multilineage differentiation potential. Hence, this study intended to explore the wound healing role of MSC-derived exosomes containing long noncoding RNA (lncRNA) H19 in DFU. lncRNA H19 was predicated to bind to microRNA-152-3p (miR-152-3p), which targeted phosphatase and tensin homolog (PTEN) deleted on chromosome ten. Fibroblasts in DFU samples exhibited highly expressed miR-152-3p and poorly expressed lncRNA H19 and PTEN, along with an activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt1) signaling pathway. The fibroblasts were cocultured with lncRNA H19-transfected MSCs and MSC-derived exosomes to assess the effect of the lncRNA H19/miR-152-3p/PTEN axis on the biological activities and inflammation in fibroblasts. Mouse models of DFU were developed by streptozotocin, which was injected with MSC-derived exosomes overexpressing lncRNA H19. lncRNA H19 in MSCs was transferred through exosomes to fibroblasts, the mechanism of which improved wound healing in DFU, corresponded to promoted fibroblast proliferation and migration, as well as suppressed apoptosis and inflammation. Wound healing in mice with DFU was facilitated following the injection of MSC-derived exosomes overexpressing lncRNA H19. Taken together, MSC-derived exosomal lncRNA H19 prevented the apoptosis and inflammation of fibroblasts by impairing miR-152-3p-mediated PTEN inhibition, leading to the stimulated wound-healing process in DFU.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Song Luan
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jing Chen
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yue Zhou
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Tingting Wang
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhijuan Li
- The 2(nd) Department of General, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yili Fu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Aixia Zhai
- Department of Microbiology, Harbin Medical University, Harbin 150081, People's Republic of China.
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, People's Republic of China.
| |
Collapse
|