1
|
Wang T, Guo W, Ren X, Lang F, Ma Y, Qiu C, Jiang J. Progress of immunotherapies in gestational trophoblastic neoplasms. J Cancer Res Clin Oncol 2023; 149:15275-15285. [PMID: 37594534 DOI: 10.1007/s00432-023-05010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Different from other malignant gynecologic tumors, gestational trophoblastic neoplasms (GTNs) exhibit an exceptionally high cure rate primarily through chemotherapeutic interventions. However, there exists a small subset of refractory GTNs that do not respond to conventional chemotherapies. In such cases, the emergence of immunotherapies has demonstrated significant benefits in managing various challenging GTNs. PURPOSE This article aims to provide a comprehensive and systematic review of the immune microenvironment and immunotherapeutic approaches for GTNs. The purpose is to identify potential biomarkers that could enhance disease management and summarize the available immunotherapies for ease of reference. METHODS We reviewed the relevant literatures toward immunotherapies of GTNs from PubMed. CONCLUSION Current immunotherapeutic strategies for GTNs mainly revolve around immune checkpoint inhibitors (ICIs) targeting programmed death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Prominent examples include avelumab, pembrolizumab, and camrelizumab. However, existing researches into the underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Tong Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Wenxiu Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiaochen Ren
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fangfang Lang
- Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong, People's Republic of China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Li MW, Li F, Cheng J, Wang F, Zhou P. Recurrent Androgenetic Complete Hydatidiform Moles with p57 KIP2-Positive in a Chinese Family. Reprod Sci 2021; 29:1749-1755. [PMID: 34606065 DOI: 10.1007/s43032-021-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Androgenetic complete hydatidiform moles (CHMs) are associated with an increased risk of gestational trophoblastic neoplasia. P57KIP2 expression in hydatidiform moles is thought to be a powerful marker for differentiating CHMs from partial hydatidiform moles (PHMs). However, since there are so few such families clinically, very few studies have addressed the importance of p57KIP2-positive in the diagnosis and prognosis of CHM. This study aimed to emphasize the significance of the accurate diagnosis of rare CHM and careful follow-up. The classification of the hydatidiform mole was based on morphologic examination and p57KIP2 expression was determined by p57KIP2 immunohistochemical staining. Copy number variation sequencing was used to determine the genetic make-up of the mole tissues. In addition, the short tandem repeat polymorphism analysis was used to establish the parental origin of the moles. Finally, whole-exome sequencing was performed to identify the causal genetic variants associated with this case. In one Chinese family, the proband had numerous miscarriages throughout her two marriages. Morphologic evaluation and molecular genotyping accurately sub-classified two molar specimens as uniparental disomy CHM of androgenetic origin. Furthermore, p57KIP2 expression was found in cytotrophoblasts and villous stromal cells. In the tissue, there were hyperplasia trophoblastic cells and heteromorphic nuclei. In this family, no deleterious variant genes associated with recurrent CHM were detected. It is important to evaluate the prognostic value of p57KIP2 expression in androgenetic recurrent CHM. This knowledge may help to minimize erroneous diagnosis of CHMs as PHMs, as well as making us aware of the need to manage potential gestational trophoblastic neoplasia.
Collapse
Affiliation(s)
- Ming-Wei Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China.,Frontier Research Center, School of Medicine, Anhui University of Science and Technology, Anhui, 232001, China
| | - Fan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China
| | - Jin Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China
| | - Fei Wang
- Frontier Research Center, School of Medicine, Anhui University of Science and Technology, Anhui, 232001, China.
| | - Ping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Anhui, 232001, China.
| |
Collapse
|
3
|
Li D, Zheng L, Zhao D, Xu Y, Wang Y. The Role of Immune Cells in Recurrent Spontaneous Abortion. Reprod Sci 2021; 28:3303-3315. [PMID: 34101149 PMCID: PMC8186021 DOI: 10.1007/s43032-021-00599-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Recurrent spontaneous abortion affects approximately 1–2% of women of childbearing, and describes a condition in which women suffer from three or more continuous spontaneous miscarriages. However, the origin of recurrent spontaneous abortion (RSA) remains unknown, preventing effective treatment and placing stress upon patients. It has been acknowledged that successful pregnancy necessitates balanced immune responses. Therefore, immunological aberrancy may be considered a root cause of poor pregnancy outcomes. Considerable published studies have investigated the relationship between various immune cells and RSA. Here, we review current knowledge on this area, and discuss the five main categories of immune cells involved in RSA; these include innate lymphocytes (ILC), macrophages, decidual dendritic cells (DCs), and T cells. Furthermore, we sought to summarize the impact of the multiple interactions of various immune cells on the emergence of RSA. A good understanding of pregnancy-induced immunological alterations could reveal new therapeutic strategies for favorable pregnancy outcomes.
Collapse
Affiliation(s)
- Dan Li
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | | | - Ying Xu
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Departments of Cardiovascular Medicine, First Hospital, Jilin University, Changchun, 130000, China.
| |
Collapse
|
4
|
Shokri MR, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, Shokri F, Zarnani AH. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep 2019; 9:10007. [PMID: 31292483 PMCID: PMC6620360 DOI: 10.1038/s41598-019-46316-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Although natural killer (NK) cells play a crucial role in the maintenance of a successful pregnancy, their cytotoxic activity should be tightly controlled. We hypothesized that endometrial mesenchymal stromal/stem cells (eMSCs) could potentially attenuate the functional features of NK cells. Herein, we assessed immunomodulatory effects of menstrual blood-derived stromal/stem cells (MenSCs), as a surrogate for eMSCs, on NK cells function. Our results showed that MenSCs induced proliferation of NK cells. However, IFN-γ/IL-1β pretreated MenSCs significantly inhibited NK cell proliferation. Of 41 growth factors tested, MenSCs produced lower levels of insulin-like growth factor binding proteins (IGFBPs) 1-4, VEGF-A, β-NGF, and M-CSF compared to bone marrow-derived mesenchymal stem cells (BMSCs). MenSCs displayed high activity of IDO upon IFN-γ treatment. The antiproliferative potential of IFN-γ/IL-1β-pretreated MenSCs was mediated through IL-6 and TGF-β. MenSCs impaired the cytotoxic activity of NK cells on K562 cells, consistent with the lower expression of perforin, granzymes A, and B. We also observed that in vitro decidualization of MenSCs in the presence of IFN-γ reduced the inhibitory effect of MenSCs on NK cell cytotoxicity against K562 target cells. Additionally, MenSCs were found to be prone to NK cell-mediated lysis in an MHC-independent manner. Our findings imply that dysregulation of NK cells in such pregnancy-related disorders as miscarriage may stem from dysfunctioning of eMSCs.
Collapse
Affiliation(s)
- Mohammad-Reza Shokri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|