1
|
Sun M, Han X, Liu X, Xu Y. Cinobufacini suppresses malignant behaviors of endometrial cancer by regulating NF-κB pathway. Biotechnol Genet Eng Rev 2024; 40:2221-2233. [PMID: 37022215 DOI: 10.1080/02648725.2023.2199236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Cinobufagin has inhibitory effects on various tumors, but there are few studies on gynecological tumors. This study explored the function and molecular mechanism of cinobufagin in endometrial cancer (EC). Different concentrations of cinobufagin treated EC cells (Ishikawa and HEC-1). Clone formation, methyl thiazolyl tetrazolium (MTT), flow cytometry, and transwell assays were used to detect malignant behaviors. A Western blot assay was performed to detect protein expression. Cinobufacini was sensitive to the inhibition of EC cell proliferation in a time- and concentration-dependent manner. Meanwhile, EC cell apoptosis was induced by cinobufacini. In addition, cinobufacini impaired the invasive and migratory abilities of EC cells. More importantly, cinobufacini blocked the nuclear factor kappa beta (NF-κB) pathway in EC by inhibiting p-IkBα and p-p65 expression. Cinobufacini suppresses malignant behaviors of EC by blocking the NF-κB pathway.
Collapse
Affiliation(s)
- Mengyi Sun
- Beijing Medical Health Technology Development Center, Beijing Pharma and Biotech Center, Beijing, China
| | - Xiaodao Han
- Day Chemotherapy Ward, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Xiaoyun Liu
- Day Chemotherapy Ward, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Yintao Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Chen Y, Wu S, Han Y, Shi H, Yuan J, Cui W. LncRNA SH3PXD2A-AS1 facilitates cisplatin resistance in non-small cell lung cancer by regulating FOXM1 succinylation. BMC Cancer 2024; 24:848. [PMID: 39020302 PMCID: PMC11256434 DOI: 10.1186/s12885-024-12624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Forkhead Box Protein M1/metabolism
- Forkhead Box Protein M1/genetics
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Animals
- Mice
- Sirtuins/metabolism
- Sirtuins/genetics
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Yunfeng Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Siyan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Yu Han
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Hai Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China
| | - Jieqing Yuan
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China.
| | - Wenjie Cui
- Cancer Institute, Xuzhou Medical University, No. 206, Tongshan Road, Xuzhou, Jiangsu, 221116, China.
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, University Road, Tongshan District, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
3
|
Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7: a novel molecular target for personalized cancer treatment? Oncogene 2024; 43:993-1006. [PMID: 38383727 PMCID: PMC10978493 DOI: 10.1038/s41388-024-02976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
| |
Collapse
|
4
|
Gong X, Jia L, Zhou L, Hu T. USP14 predicts poorer survival outcomes and promotes tumor progression in endometrial carcinoma by activating NF-κB signaling. Aging (Albany NY) 2023; 15:12120-12135. [PMID: 37917013 PMCID: PMC10683613 DOI: 10.18632/aging.205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Ubiquitin-specific protease 14 (USP14), a member of the USP family, which catalyzes ubiquitin cleavage from a range of protein substrates, has been found dysregulated in several cancers. Our aim is to explore the functions and mechanism of USP14 in endometrial carcinoma (EC). Quantitative real-time PCR (qRT-PCR) and western blot (WB) were used to assess USP14 levels in EC tissues and adjacent nontumor tissues. USP14 overexpression or knockdown models were adopted to determine USP14-mediated effects on EC cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). The xenograft tumor experiment checked the effect of USP14 overexpression on tumor cell growth. Furthermore, the upstream signaling pathway of USP14 was predicted by bioinformatics. Consequently, EC tissues exhibited USP14 overexpression compared to normal paracancerous nontumor tissues. USP14 presence was linked to an adverse prognosis in EC cases. Functionally, USP14 overexpression reduced apoptosis and increased cell migration, invasion, and EMT in vivo and ex vivo. USP14 knockdown had the opposite effect. Mechanistically, NF-κB pathway activation occurred through the inhibitory effect of USP14 on I-κB expression. Conversely, NF-κB pathway inhibition attenuated USP14-mediated carcinogenic effects. Additionally, there existed a binding interaction between miR-124-3p and the 3'-UTR of USP14, resulting in USP14 activity inhibition. In summary, our research indicates that the involvement of miR-124-3p in USP14 regulation contributes to exacerbated EC progression through NF-κB pathway activation. The modulation of this pathway may be a new strategy for treating EC.
Collapse
Affiliation(s)
- Xiaojin Gong
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin 300211, China
| | - Li Jia
- Department of Gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Lili Zhou
- Department of Nursing, Hejiang People’s Hospital, Luzhou, Sichuan 646200, China
| | - Tongxiu Hu
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
5
|
Halasa M, Adamczuk K, Adamczuk G, Afshan S, Stepulak A, Cybulski M, Wawruszak A. Deacetylation of Transcription Factors in Carcinogenesis. Int J Mol Sci 2021; 22:11810. [PMID: 34769241 PMCID: PMC8583941 DOI: 10.3390/ijms222111810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins' properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.
Collapse
Affiliation(s)
- Marta Halasa
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Kamila Adamczuk
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Kazimierza Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Andrzej Stepulak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Marek Cybulski
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Anna Wawruszak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| |
Collapse
|
6
|
Wawruszak A, Borkiewicz L, Okon E, Kukula-Koch W, Afshan S, Halasa M. Vorinostat (SAHA) and Breast Cancer: An Overview. Cancers (Basel) 2021; 13:4700. [PMID: 34572928 PMCID: PMC8468501 DOI: 10.3390/cancers13184700] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Vorinostat (SAHA), an inhibitor of class I and II of histone deacetylases, is the first histone deacetylase inhibitor (HDI) approved for the treatment of cutaneous T-cell lymphoma in 2006. HDIs are promising anticancer agents that inhibit the proliferation of many types of cancer cells including breast carcinoma (BC). BC is a heterogeneous disease with variable biological behavior, morphological features, and response to therapy. Although significant progress in the treatment of BC has been made, high toxicity to normal cells, serious side effects, and the occurrence of multi-drug resistance limit the effective therapy of BC patients. Therefore, new active agents which improve the effectiveness of currently used regimens are highly needed. This manuscript analyzes preclinical and clinical trials data of SAHA, applied individually or in combination with other anticancer agents, considering different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20521 Turku, Finland;
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (L.B.); (E.O.); (M.H.)
| |
Collapse
|
7
|
Kratz EM, Kokot I, Dymicka-Piekarska V, Piwowar A. Sirtuins-The New Important Players in Women's Gynecological Health. Antioxidants (Basel) 2021; 10:84. [PMID: 33435147 PMCID: PMC7827899 DOI: 10.3390/antiox10010084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The participation of sirtuins in the regulation of oxidative stress and inflammation lies at the basis of their possible modes of action and is related to their expression in various cell structures; their location in the mitochondria and blood plasma has been indicated as of primary importance. Despite many existing studies, research on sirtuins continues to present an opportunity to discover new functions and dependencies, especially when it comes to women's gynecological health. Sirtuins have a significant role in both the formation and the course of many gynecological diseases. Their role is particularly important and well documented in the course of the development of cancer within the female reproductive organs; however, disturbances observed in the ovary and oocyte as well as in follicular fluid are also widely investigated. Additionally, sirtuins take part in some gynecological disturbances as regulative factors in pathways associated with insulin resistance, glucose and lipids metabolism disorders. In this review, we would like to summarize the existing knowledge about sirtuins in the manner outlined above.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona Street 15A, 15-269 Bialystok, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Guo Y, Zhao N, Zhou J, Dong J, Wang X. Sirtuin 2 in Endometrial Cancer: A Potential Regulator for Cell Proliferation, Apoptosis and RAS/ERK Pathway. Technol Cancer Res Treat 2020; 19:1533033820980781. [PMID: 33327875 PMCID: PMC7750899 DOI: 10.1177/1533033820980781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The present study aimed to explore the function of sirtuin 2 (SIRT2) on cell proliferation, apoptosis, rat sarcoma virus (RAS)/ extracellular signal-regulated kinase (ERK) pathway in endometrial cancer (EC). METHODS SIRT2 expression in human EC cell lines and human endometrial (uterine) epithelial cell (HEEC) line was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. SIRT2 knock-down and control knock-down plasmids were transfected into HEC1A cells, respectively; SIRT2 overexpression and control overexpression plasmids were transfected into Ishikawa cells, respectively. After transfection, SIRT2, HRas proto-oncogene, GTPase (HRAS) expressions were evaluated by RT-qPCR and western blot. ERK and phosphorylated ERK (pERK) expressions were evaluated by western blot. Meanwhile, cell proliferation and cell apoptosis were measured. RESULTS Compared to normal HEEC cell line, SIRT2 mRNA and protein expressions were increased in most human EC cell lines (including HEC1A, RL952 and AN3CA), while were similar in Ishikawa cell line. In HEC1A cells, SIRT2 knock-down decreased cell proliferation but increased apoptosis. In Ishikawa cells, SIRT2 overexpression induced cell proliferation but inhibited apoptosis. For RAS/ERK pathway, SIRT2 knock-down reduced HRAS and inactivated pERK in HEC1A cells, whereas SIRT2 overexpression increased HRAS and activated pERK in Ishikawa cells, suggesting that SIRT2 was implicated in the regulation of RAS/ERK pathway in EC cells. CONCLUSION SIRT2 contributes to the EC tumorigenesis, which appears as a potential therapeutic target.
Collapse
Affiliation(s)
- Yanjuan Guo
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Nannan Zhao
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jianli Zhou
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jianxin Dong
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xing Wang
- Department of Gynecology and Obstetrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
9
|
Antitumor Efficacy of the Herbal Recipe Benja Amarit against Highly Invasive Cholangiocarcinoma by Inducing Apoptosis both In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21165669. [PMID: 32784671 PMCID: PMC7460969 DOI: 10.3390/ijms21165669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
Thailand is the country with highest incidence and prevalence of cholangiocarcinoma (CCA) in the world. Due to the frequently late diagnosis that is associated with this disease, most CCA patients are prescribed chemotherapy as a form of treatment. However, CCA is able to resist the presently available chemotherapy, so to the prognosis of this disease is still very poor. In this study, we investigated the anticancer potential of a Thai herbal recipe, Benja Amarit (BJA) against CCA and the relevant mechanisms of action that are involved. We found that BJA inhibited CCA cell viability in a dose-dependent manner, especially in highly invasive KKU-213 cells. The extract induced mitochondrial- and caspase-dependent apoptosis in CCA cells by regulating the nuclear factor-κB (NF-κB) signaling pathway. BJA also triggered autophagy in CCA cells. Nonetheless, the inhibition of autophagy enhanced BJA-induced CCA cell death via apoptosis. An in vivo xenograft model revealed the growth-inhibiting and death-inducing effects of BJA against CCA by targeting apoptosis. However, general toxicity to blood cells, kidneys and the liver, as well as changes in body weight, did not appear. Our findings suggest that the herbal recipe BJA might be used as a potentially new and effective treatment for cholangiocarcinoma patients.
Collapse
|