1
|
Zeng C, Li H, Liang W, Chen J, Zhang Y, Zhang H, Xiao H, Li Y, Guan H. Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine 2024; 83:127-141. [PMID: 37541962 DOI: 10.1007/s12020-023-03468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE StAR Related Lipid Transfer Domain Containing 13 (STARD13) serves as a tumor suppressor and has been characterized in several types of malignancies. However, the role and the molecular mechanism of STARD13 in regulating the progression of papillary thyroid carcinoma (PTC) remain underexplored. METHODS The gene expression and clinical information of thyroid cancer were downloaded using "TCGAbiolinks" R package. Quantitative PCR and immunohistochemical staining were conducted to detect the expression of STARD13 in clinical tumor and adjacent non-tumor samples. Wound-healing assay, Transwell assay and 3D spheroid invasion assay were performed to evaluate the migratory and invasive capacities of PTC cells. Cell proliferation ability was determined by CCK-8 assay, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. The alterations of indicated proteins were detected by Western blotting. RESULTS In the present study, we found that STARD13 was significantly underexpressed in PTC, which was correlated with poor prognosis. Downregulation of STARD13 might be due to methylation of promoter region. Loss-and gain-of-function experiments demonstrated that STARD13 impeded migratory and invasive capacities of PTC cells in vitro and in vivo. In addition, we found that STARD13 regulated the morphology of PTC cells and inhibited epithelial-mesenchymal transition (EMT). CONCLUSION Our results suggest that STARD13 acts as a metastasis suppressor and might be a potential therapeutic target in PTC.
Collapse
Affiliation(s)
- Chuimian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilin Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hanrong Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Asif K, Memeo L, Palazzolo S, Frión-Herrera Y, Parisi S, Caligiuri I, Canzonieri V, Granchi C, Tuccinardi T, Rizzolio F. STARD3: A Prospective Target for Cancer Therapy. Cancers (Basel) 2021; 13:4693. [PMID: 34572920 PMCID: PMC8472075 DOI: 10.3390/cancers13184693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major causes of death in developed countries and current therapies are based on surgery, chemotherapeutic agents, and radiation. To overcome side effects induced by chemo- and radiotherapy, in recent decades, targeted therapies have been proposed in second and even first lines. Targeted drugs act on the essential pathways involved in tumor induction, progression, and metastasis, basically all the hallmark of cancers. Among emerging pathways, the cholesterol metabolic pathway is a strong candidate for this purpose. Cancer cells have an accelerated metabolic rate and require a continuous supply of cholesterol for cell division and membrane renewal. Steroidogenic acute regulatory related lipid transfer (START) proteins are a family of proteins involved in the transfer of lipids and some of them are important in non-vesicular cholesterol transportation within the cell. The alteration of their expression levels is implicated in several diseases, including cancers. In this review, we report the latest discoveries on StAR-related lipid transfer protein domain 3 (STARD3), a member of the START family, which has a potential role in cancer, focusing on the structural and biochemical characteristics and mechanisms that regulate its activity. The role of the STARD3 protein as a molecular target for the development of cancer therapies is also discussed. As STARD3 is a key protein in the cholesterol movement in cancer cells, it is of interest to identify inhibitors able to block its activity.
Collapse
Affiliation(s)
- Kanwal Asif
- Department of Molecular Sciences and Nanosystems, PhD School in Science and Technology of Bio and Nanomaterials, Ca’ Foscari University of Venice, 30172 Venice, Italy;
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy;
| | - Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Yahima Frión-Herrera
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy; or
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (T.T.)
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy; or
| |
Collapse
|
3
|
Al Haddad M, El-Rif R, Hanna S, Jaafar L, Dennaoui R, Abdellatef S, Miskolci V, Cox D, Hodgson L, El-Sibai M. Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Cell Commun Signal 2020; 18:144. [PMID: 32900380 PMCID: PMC7487901 DOI: 10.1186/s12964-020-00635-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Background Lung cancer is the second most commonly occurring cancer. The ability to metastasize and spread to distant locations renders the tumor more aggressive. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in the regulation of the actin cytoskeleton and in cancer cell migration and metastasis. In this study we investigated the role of the RhoA/Cdc42 GAP, StarD13, a previously described tumor suppressor, in malignancy, migration and invasion of the lung cancer cells A549. Methods We knocked down StarD13 expression in A549 lung cancer cells and tested the effect on cell migration and invadopodia formation using time lapse imaging and invasion assays. We also performed rescue experiments to determine the signaling pathways downstream of StarD13 and transfected the cells with FRET biosensors for RhoGTPases to identify the proteins involved in invadopodia formation. Results We observed a decrease in the level of expression of StarD13 in lung tumor tissues compared to normal lung tissues through immunohistochemistry. StarD13 also showed a lower expression in the lung adenocarcinoma cell line A549 compared to normal lung cells, WI38. In addition, the depletion of StarD13 increased cell proliferation and viability in WI38 and A549 cells, suggesting that StarD13 might potentially be a tumor suppressor in lung cancer. The depletion of StarD13, however, inhibited cell motility, conversely demonstrating a positive regulatory role in cell migration. This was potentially due to the constitutive activation of RhoA detected by pull down and FRET assays. Surprisingly, StarD13 suppressed cell invasion by inhibiting Cdc42-mediated invadopodia formation. Indeed, TKS4 staining and invadopodia assay revealed that StarD13 depletion increased Cdc42 activation as well as invadopodia formation and matrix degradation. Normal lung cells depleted of StarD13 also produced invadopodia, otherwise a unique hallmark of invasive cancer cells. Cdc42 knock down mimicked the effects of StarD13, while overexpression of a constitutively active Cdc42 mimicked the effects of its depletion. Finally, immunostaining and FRET analysis revealed the absence of StarD13 in invadopodia as compared to Cdc42, which was activated in invadopodia at the sites of matrix degradation. Conclusion In conclusion, StarD13 plays distinct roles in lung cancer cell migration and invasion through its differential regulation of Rho GTPases. Video abstract.
Collapse
Affiliation(s)
- Maria Al Haddad
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Rayane El-Rif
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Samer Hanna
- Department of Pediatrics HemeOnc division, Weill Cornell Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, USA
| | - Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Rayanne Dennaoui
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053. Chouran, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
4
|
Jaafar L, Chamseddine Z, El-Sibai M. StarD13: a potential star target for tumor therapeutics. Hum Cell 2020; 33:437-443. [PMID: 32274657 DOI: 10.1007/s13577-020-00358-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
StarD13 is a tumor suppressor and a GTPase activating protein (GAP) for Rho GTPases. Thus, StarD13 regulates cell survival pathways and induces apoptosis in a p53-dependent and independent manners. In tumors, StarD13 is either downregulated or completely inhibited, depending on the tumor type. As such, and through the dysregulation of Rho GTPases, this affects adhesion dynamics, actin dynamics, and leads to an increase or a decrease in tumor metastasis depending on the tumor grade and type. Being a key regulatory protein, StarD13 is a potential promising candidate for therapeutic approaches. This paper reviews the key characteristics of this protein and its role in tumor malignancies.
Collapse
Affiliation(s)
- Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon
| | - Zeinab Chamseddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon.
| |
Collapse
|