1
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
2
|
Ali-Khiavi P, Mohammadi M, Masoumi S, Saffarfar H, Kheradmand R, Mobed A, Hatefnia F. The Therapeutic Potential of Exosome Therapy in Sepsis Management: Addressing Complications and Improving Outcomes". Cell Biochem Biophys 2024:10.1007/s12013-024-01564-7. [PMID: 39363035 DOI: 10.1007/s12013-024-01564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Infection occurs when pathogens penetrate tissues, reproduce, and trigger a host response to both the infectious agents and their toxins. A diverse array of pathogens, including viruses and bacteria, can cause infections. The host's immune system employs several mechanisms to combat these infections, typically involving an innate inflammatory response. Inflammation is a complex biological reaction that can affect various parts of the body and is a key component of the response to harmful stimuli. Sepsis arises when the body's response to infection leads to widespread damage to tissues and organs, potentially resulting in severe outcomes or death. The initial phase of sepsis involves immune system suppression. Early identification and targeted management are crucial for improving sepsis outcomes. Common treatment approaches include antibiotics, intravenous fluids, blood cultures, and monitoring urine output. This study explores the potential of exosome therapy in enhancing the management and alleviation of sepsis symptoms.
Collapse
Affiliation(s)
- Payam Ali-Khiavi
- Medical faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Kheradmand
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Faezeh Hatefnia
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Chowdhury SG, Ray R, Karmakar P. Exosomal miRNAs-a diagnostic biomarker acting as a guiding light in the diagnosis of prostate cancer. Funct Integr Genomics 2022; 23:23. [PMID: 36574059 DOI: 10.1007/s10142-022-00951-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prostate cancer, one of the major causes of mortality globally is regarded as the second leading cause of mortality among men. It is known to affect the stromal cells surrounding it. Through the use of exosomes, the affected stromal cells can promote the growth and spread of the cancer. Exosomes are known to play a role not only in the development and progression of cancer but also contribute to the drug-resistance character of cancer cells. Recently, the discovery of the small non-coding RNAs or miRNA has attracted attention of cancer researchers as they can regulate the expression of different genes. Therefore, exosomal miRNA can be used as a novel and reliable biomarker for the diagnosis and treatment of prostate cancer. In addition, exosomal miRNAs can also be used as a potential treatment for prostate cancer. The goal of this review is to provide a comprehensive analysis of the current knowledge about the role of exosomal miRNAs in the treatment of patients with prostate cancer and their potential role in monitoring the disease.
Collapse
Affiliation(s)
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
5
|
Kallenbach J, Atri Roozbahani G, Heidari Horestani M, Baniahmad A. Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci 2022; 12:200. [PMID: 36522745 PMCID: PMC9753376 DOI: 10.1186/s13578-022-00941-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is an age-related malignancy in men with a high incidence rate. PCa treatments face many obstacles due to cancer cell resistance and many bypassing mechanisms to escape therapy. According to the intricacy of PCa, many standard therapies are being used depending on PCa stages including radical prostatectomy, radiation therapy, androgen receptor (AR) targeted therapy (androgen deprivation therapy, supraphysiological androgen, and AR antagonists) and chemotherapy. Most of the aforementioned therapies have been implicated to induce cellular senescence. Cellular senescence is defined as a stable cell cycle arrest in the G1 phase and is one of the mechanisms that prevent cancer proliferation. RESULTS In this review, we provide and analyze different mechanisms of therapy-induced senescence (TIS) in PCa and their effects on the tumor. Interestingly, it seems that different molecular pathways are used by cancer cells for TIS. Understanding the complexity and underlying mechanisms of cellular senescence is very critical due to its role in tumorigenesis. The most prevalent analyzed pathways in PCa as TIS are the p53/p21WAF1/CIP1, the p15INK4B/p16INK4A/pRb/E2F/Cyclin D, the ROS/ERK, p27Kip1/CDK/pRb, and the p27Kip1/Skp2/C/EBP β signaling. Despite growth inhibition, senescent cells are highly metabolically active. In addition, their secretome, which is termed senescence-associated secretory phenotype (SASP), affects within the tumor microenvironment neighboring non-tumor and tumor cells and thereby may regulate the growth of tumors. Induction of cancer cell senescence is therefore a double-edged sword that can lead to reduced or enhanced tumor growth. CONCLUSION Thus, dependent on the type of senescence inducer and the specific senescence-induced cellular pathway, it is useful to develop pathway-specific senolytic compounds to specifically targeting senescent cells in order to evict senescent cells and thereby to reduce SASP side effects.
Collapse
Affiliation(s)
- Julia Kallenbach
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Golnaz Atri Roozbahani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Mehdi Heidari Horestani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Aria Baniahmad
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
6
|
Jiang Q, Tan XP, Zhang CH, Li ZY, Li D, Xu Y, Liu YX, Wang L, Ma Z. Non-Coding RNAs of Extracellular Vesicles: Key Players in Organ-Specific Metastasis and Clinical Implications. Cancers (Basel) 2022; 14:cancers14225693. [PMID: 36428785 PMCID: PMC9688215 DOI: 10.3390/cancers14225693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-encapsulated vesicles released by most cells. They act as multifunctional regulators of intercellular communication by delivering bioactive molecules, including non-coding RNAs (ncRNAs). Metastasis is a major cause of cancer-related death. Most cancer cells disseminate and colonize a specific target organ via EVs, a process known as "organ-specific metastasis". Mounting evidence has shown that EVs are enriched with ncRNAs, and various EV-ncRNAs derived from tumor cells influence organ-specific metastasis via different mechanisms. Due to the tissue-specific expression of EV-ncRNAs, they could be used as potential biomarkers and therapeutic targets for the treatment of tumor metastasis in various types of cancer. In this review, we have discussed the underlying mechanisms of EV-delivered ncRNAs in the most common organ-specific metastases of liver, bone, lung, brain, and lymph nodes. Moreover, we summarize the potential clinical applications of EV-ncRNAs in organ-specific metastasis to fill the gap between benches and bedsides.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Xiao-Ping Tan
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
| | - Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhi-Yuan Li
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Du Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yan Xu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yu Xuan Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
- Correspondence: (Z.M.); (L.W.)
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
- Correspondence: (Z.M.); (L.W.)
| |
Collapse
|
7
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
8
|
Lu Z, Hou J, Li X, Zhou J, Luo B, Liang S, Lo RK, Wong TM, Kuang GM. Exosome-Derived miRNAs as Potential Biomarkers for Prostate Bone Metastasis. Int J Gen Med 2022; 15:5369-5383. [PMID: 35673634 PMCID: PMC9167626 DOI: 10.2147/ijgm.s361981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to identify the potential exosome-derived microRNAs (miRNAs) related to prostate cancer (Pca) bone metastasis. Methods Two datasets were collected. One dataset was from the authors’ institute, for which two groups of 10 patients each were designed: in the first one, the patients had early-stage localised Pca without bone metastasis, and in the other, the patients presented with Pca with bone metastasis. Then, the miRNA expression profiles of the blood exosomes were obtained and analysed. The other dataset was a public dataset of the miRNA expression transcriptome (GSE26964), which was downloaded from Gene Expression Omnibus (GEO). The results of both datasets were jointly analysed and the most bone-metastatic-related differentially expressed miRNAs (diff-miRNAs) were identified and further validated. Finally, a series of bioinformatics analyses were performed and the relationship between target genes of the diff-miRNAs and the pathogenesis and progression of bone metastasis of Pca were studied. Results From the authors’ dataset, in all, 313 diff-miRNAs were identified, of which 205 were up-regulated while 108 were down-regulated. From the GSE26964 dataset, 107 diff-miRNAs were found, of which 44 were up-regulated and 63 were down-regulated. Taking the intersection of the results of both datasets, four diff-miRNAs were identified: hsa-miR-125a-3p, hsa-miR-330-3p, hsa-miR-339-5p and hsa-miR-613. In all, 94 target genes of the four diff-miRNAs were predicted. After considering the intersection of the results from the GSE32269 dataset, we obtained 25 target genes. Although either positive or negative correlations were found among the diff-miRNAs with some of the target genes, there is a lack of evidence on how such correlations regulate the development and promotion of Pca bone metastasis. Conclusion Hsa-miR-125a-3p, hsa-miR-330-3p, hsa-miR-339-5p and hsa-miR-613 are potential biomarkers for Pca bone metastasis.
Collapse
Affiliation(s)
- Zhenquan Lu
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jian Hou
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Xiao Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jun Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Bingfeng Luo
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Songwu Liang
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Richard K Lo
- Department of Urology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Guan-Ming Kuang
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Correspondence: Guan-Ming Kuang, Email
| |
Collapse
|
9
|
Gao Z, Pang B, Li J, Gao N, Fan T, Li Y. Emerging Role of Exosomes in Liquid Biopsy for Monitoring Prostate Cancer Invasion and Metastasis. Front Cell Dev Biol 2021; 9:679527. [PMID: 34017837 PMCID: PMC8129505 DOI: 10.3389/fcell.2021.679527] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most common solid tumor in men. While patients with local PCa have better prognostic survival, patients with metastatic PCa have relatively high mortality rates. Existing diagnostic methods for PCa rely on tissue biopsy and blood prostate-specific antigen (PSA) detection; however, the PSA test does not detect aggressive PCa. Liquid biopsy is a promising technique to overcome tumor heterogeneity in diagnosis, provide more comprehensive information, and track tumor progression over time, allowing for the development of treatment options at all stages of PCa. Exosomes containing proteins and nucleic acids are potential sources of tumor biomarkers. Accumulating evidence indicates that exosomes play important roles in cell communication and tumor progression and are suitable for monitoring PCa progression and metastasis. In this review, we summarize recent advances in the use of exosomal proteins and miRNAs as biomarkers for monitoring PCa invasion and metastasis and discuss their feasibility in clinical diagnosis.
Collapse
Affiliation(s)
- Zhengfan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Bairen Pang
- Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Jing Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
10
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Exosomes derived from circRNA Rtn4-modified BMSCs attenuate TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging miR-146a. Biosci Rep 2021; 40:224122. [PMID: 32400849 PMCID: PMC7251325 DOI: 10.1042/bsr20193436] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common and complex skeletal disorder worldwide. Exosomes secreted by bone marrow-derived mesenchymal stromal cells (BMSCs) are considered as an ideal seed source for bone tissue regeneration. However, the role of exosomes secreted by BMSCs (BMSCs-Exos) in osteoporosis and its underlying mechanisms remain unclear. In the present study, the expression of microRNA (miRNA)-146a and circular RNA (circRNA) Rtn4 (circ-Rtn4) was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), and their protein expression was determined by Western blotting. Enzyme-linked immunosorbent assay was performed to detect caspase-3 activity. Cell viability and apoptosis were assessed using 3-(4,5-Dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. Luciferase reporter assay was exploited for target validation. Results showed that tumor necrosis factor-α (TNF-α) dose-dependently increased miR-146a expression, inhibited cell viability, and promoted cell apoptosis, as indicated by increased caspase-3, cleaved caspase-3, and Bcl-2-associated X protein (Bax) expression as well as caspase-3 activity. However, miR-146a silencing or co-culture with BMSCs-Exos blocked these effects. Moreover, co-culture with exosomes-derived from circ-Rtn4-modified BMSCs (Rtn4-Exos) attenuated TNF-α-induced cytotoxicity and apoptosis in MC3T3-E1 cells, as evidenced by the decrease in caspase-3, cleaved caspase-3, and Bax protein expression and caspase-3 activity. In addition, miR-146a was identified as a target of circ-Rtn4, and Rtn4-Exos exerted their function in TNF-α-treated MC3T3-E1 cells by sponging miR-146a. Hence, our findings suggested that Rtn4-Exos attenuated TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging miR-146a, suggesting that Rtn4-Exos may serve as novel candidates for treating osteoporosis.
Collapse
|
12
|
Li S, Wang W. Extracellular Vesicles in Tumors: A Potential Mediator of Bone Metastasis. Front Cell Dev Biol 2021; 9:639514. [PMID: 33869189 PMCID: PMC8047145 DOI: 10.3389/fcell.2021.639514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
As one of the most common metastatic sites, bone has a unique microenvironment for the growth and prosperity of metastatic tumor cells. Bone metastasis is a common complication for tumor patients and accounts for 15-20% of systemic metastasis, which is only secondary to lung and liver metastasis. Cancers prone to bone metastasis include lung, breast, and prostate cancer. Extracellular vesicles (EVs) are lipid membrane vesicles released from different cell types. It is clear that EVs are associated with multiple biological phenomena and are crucial for intracellular communication by transporting intracellular substances. Recent studies have implicated EVs in the development of cancer. However, the potential roles of EVs in the pathological exchange of bone cells between tumors and the bone microenvironment remain an emerging area. This review is focused on the role of tumor-derived EVs in bone metastasis and possible regulatory mechanisms.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University, Shenyang, China
- *Correspondence: Shenglong Li,
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Wei Wang,
| |
Collapse
|
13
|
Ye Y, Li SL, Wang JJ. miR-100-5p Downregulates mTOR to Suppress the Proliferation, Migration, and Invasion of Prostate Cancer Cells. Front Oncol 2020; 10:578948. [PMID: 33335853 PMCID: PMC7736635 DOI: 10.3389/fonc.2020.578948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background Previous studies have shown that miR-100-5p expression is abnormal in prostate cancer. However, the role and regulatory mechanism of miR-100-5p requires further investigation. Thus, the aim of this study was to observe the effects of miR-100-5p on the proliferation, migration and invasion of prostate cancer (PCa) cells and to explore the potential related regulatory mechanism. Materials and Methods Differential miRNA expression analysis was performed using next-generation sequencing (NGS) in the patients with PCa and benign prostatic hyperplasia (BPH). The expression levels of miR-100-5p were detected using real-time fluorescence quantitative PCR (qRT-PCR). PCa cells were transfected with NC-mimics or miR-100-5p mimics, inhibitor by using liposome transfection. Moreover, the CCK-8 proliferation assay, colony formation assay, cell scratch assay and Transwell assay were used to detect the effects of miR-100-5p on cell proliferation, migration, and invasion. In addition, the target gene of miR-100-5p was verified by luciferase reporter gene assay, and the influence of miR-100-5p on the expression of mTOR mRNA by qRT-PCR and the expression of mammalian target of rapamycin (mTOR) protein was detected by western blot and immunohistochemical staining. Results Differential expression analysis of high-throughput sequencing data showed low expression of miR-100-5p in the patients of PCa. It was further confirmed by qRT-PCR that the expression of miR-100-5p in PCa cells was significantly lower than that in RWPE-1 cells (P<0.01). miR-100-5p expression in lymph node carcinoma of prostate(LNCaP) cells was markedly upregulated after transfection with miR-100-5p mimics (P<0.01), while cell proliferation, migration and invasion capacities were clearly reduced (P<0.01). mTOR mRNA and protein expression was also substantially lowered (P<0.01) and mTOR adjusted the expression of NOX4. Finally, we further confirmed by immunohistochemical staining that miR-100-5p regulated the expression of mTOR and NOX4. Conclusion miR-100-5p is expressed at low levels in PCa cells, and it can suppress PCa cell proliferation, migration and invasion, the mechanism of which is related to downregulating the expression of mTOR.
Collapse
Affiliation(s)
- Yun Ye
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Su-Liang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jian-Jun Wang
- Emergency Department, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
14
|
MicroRNAs as Guardians of the Prostate: Those Who Stand before Cancer. What Do We Really Know about the Role of microRNAs in Prostate Biology? Int J Mol Sci 2020; 21:ijms21134796. [PMID: 32645914 PMCID: PMC7370012 DOI: 10.3390/ijms21134796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related deaths of men in the Western world. Despite recent advancement in genomics, transcriptomics and proteomics to understand prostate cancer biology and disease progression, castration resistant metastatic prostate cancer remains a major clinical challenge and often becomes incurable. MicroRNAs (miRNAs), about 22-nucleotide-long non-coding RNAs, are a group of regulatory molecules that mainly work through post-transcriptional gene silencing via translational repression. Expression analysis studies have revealed that miRNAs are aberrantly expressed in cancers and have been recognized as regulators of prostate cancer progression. In this critical review, we provide an analysis of reported miRNA functions and conflicting studies as they relate to expression levels of specific miRNAs and prostate cancer progression; oncogenic and/or tumor suppressor roles; androgen receptor signaling; epithelial plasticity; and the current status of diagnostic and therapeutic applications. This review focuses on select miRNAs, highly expressed in normal and cancer tissue, to emphasize the current obstacles faced in utilizing miRNA data for significant impacts on prostate cancer therapeutics.
Collapse
|
15
|
Colletti M, Tomao L, Galardi A, Paolini A, Di Paolo V, De Stefanis C, Mascio P, Nazio F, Petrini S, Castellano A, Russo I, Caruso R, Piga S, De Vito R, Pascucci L, Peinado H, Masotti A, Locatelli F, Di Giannatale A. Neuroblastoma-secreted exosomes carrying miR-375 promote osteogenic differentiation of bone-marrow mesenchymal stromal cells. J Extracell Vesicles 2020; 9:1774144. [PMID: 32922693 PMCID: PMC7448845 DOI: 10.1080/20013078.2020.1774144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bone marrow (BM) is the major target organ for neuroblastoma (NB) metastasis and its involvement is associated with poor outcome. Yet, the mechanism by which NB cells invade BM is largely unknown. Tumour microenvironment represents a key element in tumour progression and mesenchymal stromal cells (MSCs) have been recognized as a fundamental part of the associated tumour stroma. Here, we show that BM-MSCs isolated from NB patients with BM involvement exhibit a greater osteogenic potential than MSCs from non-infiltrated BM. We show that BM metastasis-derived NB-cell lines secrete higher levels of exosomal miR-375, which promotes osteogenic differentiation in MSCs. Of note, clinical data demonstrate that high level of miR-375 correlates with BM metastasis in NB patients. Our findings suggest, indeed, a potential role for exosomal miR-375 in determining a favourable microenvironment in BM to promote metastatic progression. MiR-375 may, thus, represent a novel biomarker and a potential target for NB patients with BM involvement.
Collapse
Affiliation(s)
- Marta Colletti
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luigi Tomao
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Galardi
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Multifactorial and Complex Phenotypes Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Virginia Di Paolo
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Department of Laboratories - Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Mascio
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Nazio
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Research Laboratory, Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Aurora Castellano
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ida Russo
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberta Caruso
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Piga
- Unit of Clinical Epidemiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita De Vito
- Department of Laboratories - Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrea Masotti
- Research Laboratories, Multifactorial and Complex Phenotypes Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Gynecology/Obstetrics & Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy. Int J Mol Sci 2020; 21:ijms21062118. [PMID: 32204455 PMCID: PMC7139716 DOI: 10.3390/ijms21062118] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality among men in the developed world. Conventional anti-PCa therapies are not effective for patients with advanced and/or metastatic disease. In most cases, cancer therapies fail due to an incomplete depletion of tumor cells, resulting in tumor relapse. Exosomes are involved in tumor progression, promoting the angiogenesis and migration of tumor cells during metastasis. These structures contribute to the dissemination of pathogenic agents through interaction with recipient cells. Exosomes may deliver molecules that are able to induce the transdifferentiation process, known as “epithelial to mesenchymal transition”. The composition of exosomes and the associated possibilities of interacting with cells make exosomes multifaceted regulators of cancer development. Extracellular vesicles have biophysical properties, such as stability, biocompatibility, permeability, low toxicity and low immunogenicity, which are key for the successful development of an innovative drug delivery system. They have an enhanced circulation stability and bio-barrier permeation ability, and they can therefore be used as effective chemotherapeutic carriers to improve the regulation of target tissues and organs. Exosomes have the capacity to deliver different types of cargo and to target specific cells. Chemotherapeutics, natural products and RNA have been encapsulated for the treatment of prostate cancers.
Collapse
|
17
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|