1
|
Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol 2024; 14:1454161. [PMID: 39610917 PMCID: PMC11602425 DOI: 10.3389/fonc.2024.1454161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME). This manuscript examines the pivotal role of metabolic reprogramming in PLC, with an emphasis on the alterations in glucose, lipid, and amino acid metabolism that drive tumor progression. The Warburg effect, marked by increased glycolysis, facilitates rapid energy production and biosynthesis of cellular components in HCC. Changes in lipid metabolism, including elevated de novo fatty acid synthesis and lipid oxidation, support membrane formation and energy storage essential for cancer cell survival. Amino acid metabolism, particularly glutamine utilization, supplies critical carbon and nitrogen for nucleotide synthesis and maintains redox homeostasis. These metabolic adaptations not only enhance tumor growth and invasion but also reshape the TME, promoting immune escape. Targeting these metabolic pathways presents promising therapeutic opportunities for PLC. This review underscores the interaction between metabolic reprogramming and tumor immunity, suggesting potential metabolic targets for innovative therapeutic strategies. A comprehensive understanding of PLC's intricate metabolic landscape may lead to more effective treatments and better patient outcomes. Integrating metabolomics, genomics, and proteomics in future research will be vital for identifying precise therapeutic targets and advancing personalized therapies for liver cancer.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | |
Collapse
|
2
|
Qin H, Zheng G, Li Q, Shen L. Metabolic reprogramming induced by DCA enhances cisplatin sensitivity through increasing mitochondrial oxidative stress in cholangiocarcinoma. Front Pharmacol 2023; 14:1128312. [PMID: 37818192 PMCID: PMC10560739 DOI: 10.3389/fphar.2023.1128312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Background: Cholangiocarcinoma has obvious primary multidrug resistance and is generally resistant to cisplatin and other chemotherapy drugs and high glycolytic levels may be associated with chemotherapy resistance of cholangiocarcinoma cells. Dichloroacetate (DCA) is a specific inhibitor of PDK, which can promote mitochondrial aerobic oxidation process by activating PDH. In the past few years, there have been an increasing number of studies supporting the action of DCA against cancer, which also provided evidence for targeting metabolism to enhance the efficacy of cholangiocarcinoma chemotherapy. Methods: Glucose uptake and lactic acid secretion were used to detect cell metabolism level. Cell apoptosis and cell cycle were detected to confirm cell fate induced by cisplatin combined with DCA. Mito-TEMPO was used to inhibit mtROS to explore the relationship between oxidative stress and cell cycle arrest induced by DCA under cisplatin stress. Finally, PCR array and autophagy inhibitor CQ were used to explore the potential protective mechanism under cell stress. Results: DCA changed the metabolic model from glycolysis to aerobic oxidation in cholangiocarcinoma cells under cisplatin stress. This metabolic reprogramming increased mitochondrial reactive oxygen species (mtROS) levels, which promoted cell cycle arrest, increased the expression of antioxidant genes and activated autophagy. Inhibition of autophagy further increased the synergistic effect of DCA and cisplatin. Conclusion: DCA increased cisplatin sensitivity in cholangiocarcinoma cells via increasing the mitochondria oxidative stress and cell growth inhibition. Synergistic effects of DCA and CQ were observed in cholangiocarcinoma cells, which further increased the cisplatin sensitivity via both metabolic reprogramming and inhibition of the stress response autophagy.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Qiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Luyan Shen
- Second Hospital of Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
3
|
Lu Y, Li X, Zhao K, Shi Y, Deng Z, Yao W, Wang J. Proteomic and Phosphoproteomic Profiling Reveals the Oncogenic Role of Protein Kinase D Family Kinases in Cholangiocarcinoma. Cells 2022; 11:cells11193088. [PMID: 36231050 PMCID: PMC9562908 DOI: 10.3390/cells11193088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy in the hepatobiliary system, with dysregulated protein expression and phosphorylation signaling. However, the protein and phosphorylation signatures of CCAs are little-known. Here, we performed the proteomic and phosphoproteomic profiling of tumors and normal adjacent tissues (NATs) from patients with CCA and predicted eleven PKs high-potentially related to CCA with a comprehensive inference of the functional protein kinases (PKs) (CifPK) pipeline. Besides the two known CCA-associated PKs, we screened the remaining candidates and uncovered five PKs as novel regulators in CCA. Specifically, the protein kinase D (PKD) family members, including PRKD1, PRKD2, and PRKD3, were identified as critical regulators in CCA. Moreover, the pan-inhibitor of the PKD family, 1-naphthyl PP1 (1-NA-PP1), was validated as a potent agent for inhibiting the proliferation, migration, and invasion ability of CCA cells. This study reveals new PKs associated with CCA and suggests PRKD kinases as novel treatment targets for CCA.
Collapse
Affiliation(s)
- Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.Y.); (J.W.); Tel./Fax: +86-27-8366-5395 (J.W.)
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Affiliated Tianyou Hospital, University of Science & Technology, Wuhan 430064, China
- Correspondence: (W.Y.); (J.W.); Tel./Fax: +86-27-8366-5395 (J.W.)
| |
Collapse
|
4
|
Lertpanprom M, Silsirivanit A, Tippayawat P, Proungvitaya T, Roytrakul S, Proungvitaya S. High expression of protein tyrosine phosphatase receptor S (PTPRS) is an independent prognostic marker for cholangiocarcinoma. Front Public Health 2022; 10:835914. [PMID: 35991009 PMCID: PMC9387352 DOI: 10.3389/fpubh.2022.835914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor of the bile duct with a high rate of mortality. Lymph node metastasis is an important factor facilitating the progression of CCA. A reliable biomarker for diagnosis, progression status, or prognosis of CCA is still lacking. To identify a novel and reliable biomarker for diagnosis/prognosis of CCA, liquid chromatography-mass spectrometry and tandem mass spectrometry (LC-MS/MS) in combination with bioinformatics analysis were applied for the representative serum samples of patients with CCA. The proteome results showed that protein tyrosine phosphatase receptor S (PTPRS) had the highest potential candidate. Then, a dot blot assay was used to measure the level of serum PTPRS in patients with CCA (n = 80), benign biliary disease patients (BBD; n = 39), and healthy controls (HC; n = 55). PTPRS level of CCA sera (14.38 ± 9.42 ng/ml) was significantly higher than that of BBD (10.7 ± 5.05 ng/ml) or HC (6 ± 3.73 ng/ml) (P < 0.0001). PTPRS was associated with serum albumin (P = 0.028), lymph node metastasis (P = 0.038), and the survival time of patients (P = 0.011). Using a log-rank test, higher serum PTPRS level was significantly (P = 0.031) correlated with a longer overall survival time of patients with CCA, and PTPRS was an independent prognostic marker for CCA superior to carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA) or alkaline phosphatase (ALP). High expression of PTPRS could be a good independent prognostic marker for CCA.
Collapse
Affiliation(s)
- Muntinee Lertpanprom
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Atit Silsirivanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharaporn Tippayawat
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Siriporn Proungvitaya
| |
Collapse
|
5
|
Kuo YH, Chan TC, Lai HY, Chen TJ, Wu LC, Hsing CH, Li CF. Overexpression of Pyruvate Dehydrogenase Kinase-3 Predicts Poor Prognosis in Urothelial Carcinoma. Front Oncol 2021; 11:749142. [PMID: 34589439 PMCID: PMC8473833 DOI: 10.3389/fonc.2021.749142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The mitochondrial pyruvate dehydrogenase complex (PDC) link glycolysis to the tricarboxylic acid cycle by decarboxylating pyruvate to acetyl coenzyme A irreversibly. Cancer cells are characterized by a shift in cellular metabolism from mitochondrial respiration to glycolysis. PDC activity inhibition mediated by phosphorylation via pyruvate dehydrogenase kinase (PDK) has been linked to cancer. However, the clinical significance of PDKs in urothelial cancer prognosis is not clear. We investigated the role and prognostic value of PDK3 expression in patients with upper urinary tract urothelial carcinoma (UTUC) and urinary bladder urothelial carcinoma (UBUC). PATIENTS AND METHODS We retrospectively analyzed clinical data and pathological features. Formalin-fixed urothelial carcinoma (UC) tissues were collected and embedded in paraffin. The correlation of PDK3 expression with clinical characteristics, pathological findings and patient outcomes, including metastasis-free survival (MFS) and disease-specific survival (DSS) were analyzed by Pearson's chi-square test, Kaplan-Meier analysis, and the multivariate Cox proportional hazards model. RESULTS Data from 295 patients with UBUC and 340 patients with UTUC were evaluated. High PDK3 expression significantly correlated with several pathologic variables such as high T stage, lymph node metastases, high tumor grade, vascular invasion, and high mitotic rate (all P < 0.001). High PDK3 expression was associated with poor disease-specific survival (DSS) (P < 0.0001) and metastatic free survival (MFS) (P < 0.0001) in a Kaplan-Meier analysis. Additionally, multivariate analysis demonstrated increased PDK3 expression is a significant predictive risk factor for DSS [hazard ratio (HR) in UBUC, 2.79, P = 0.009; in UTUC, 2.561, P = 0.03] and MFS (HR in UBUC, 1.907, P = 0.024; in UTUC, 1.793, P = 0.044). The gene co-expression analysis showed abundant PDK3 co-upregulated genes were involved in the processes of DNA replication and repair through the Gene Ontology classification system. CONCLUSION High PDK3 expression has been linked to negative pathologic characteristics and poor oncological outcomes, suggesting that it could be used as a predictive biomarker for UC. PDK3 mRNA levels and its co-upregulated genes were strongly associated with DNA replication and repair. These results suggest that PDK3 may play a key role in tumor proliferation and development.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Wu
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| |
Collapse
|
6
|
Loilome W, Dokduang H, Suksawat M, Padthaisong S. Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opin Investig Drugs 2021; 30:985-1006. [PMID: 34292795 DOI: 10.1080/13543784.2021.1955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelium with the highest incidence found in Thailand. Some patients are considered suitable for adjuvant therapy and surgical resection is currently the curative treatment for CCA patients. Tumor recurrence is still a hurdle after treatment; hence, finding novel therapeutic strategies to combat CCA is necessary for improving outcome for patients. AREAS COVERED We discuss targeted therapies and other novel treatment approaches which include protein kinase inhibitors, natural products, amino acid transporter-based inhibitors, immunotherapy, and drug repurposing. We also examine the challenges of tumor heterogeneity, cancer stem cells (CSCs), the tumor microenvironment, exosomes, multiomics studies, and the potential of precision medicine. EXPERT OPINION Because CCA is difficult to diagnose at the early stage, the traditional treatment approaches are not effective for many patients and most tumors recur. Consequently, researchers are exploring multi-aspect molecular carcinogenesis to uncover molecular targets for further development of novel targeted drugs.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Truong SDA, Tummanatsakun D, Proungvitaya T, Limpaiboon T, Wongwattanakul M, Chua-on D, Roytrakul S, Proungvitaya S. Serum Levels of Cytokine-Induced Apoptosis Inhibitor 1 (CIAPIN1) as a Potential Prognostic Biomarker of Cholangiocarcinoma. Diagnostics (Basel) 2021; 11:diagnostics11061054. [PMID: 34201138 PMCID: PMC8227425 DOI: 10.3390/diagnostics11061054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023] Open
Abstract
The mortality rate of cholangiocarcinoma (CCA) is high since there is a lack of a non-invasive technique to accurately detect tumors at the early stage. CCA biomarkers are consistently needed for various purposes including screening, early diagnosis, prognosis and follow-up. Herein, using bioinformatic analysis of our mitochondrial proteome database of CCA tissues, we identified cytokine-induced apoptosis inhibitor 1 (CIAPIN1) as a potential prognostic biomarker for CCA. CIAPIN1 levels in the sera of 159 CCA patients and 93 healthy controls (HC) were measured using a dot blot assay. The median level ± quartile deviation of CIAPIN1 level in the sera of CCA patient group was 0.5144 ± 0.34 µg/µL, which was significantly higher than 0.2427 ± 0.09 µg/µL of the HC group (p < 0.0001). In CCA patients, higher serum CIAPIN1 level was significantly associated with lymph node metastasis (p = 0.024) and shorter overall survival time (p = 0.001, Kaplan–Meier test). Cox regression analysis showed that the serum CIAPIN1 level can be an independent prognostic indicator for the survival of CCA patients. Moreover, for the prediction of CCA prognosis, CIAPIN1 is superior to CEA, CA19-9 and ALP. In conclusion, CIAPIN1 can be a serum biomarker candidate for the poor prognosis of CCA.
Collapse
Affiliation(s)
- Son Dinh An Truong
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
| | - Doungdean Tummanatsakun
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
| | - Temduang Limpaiboon
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Molin Wongwattanakul
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Daraporn Chua-on
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (S.D.A.T.); (D.T.); (T.P.); (T.L.); (M.W.); (D.C.-o.)
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-4-3202088
| |
Collapse
|
8
|
Atas E, Oberhuber M, Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Front Oncol 2020; 10:583217. [PMID: 33384955 PMCID: PMC7771695 DOI: 10.3389/fonc.2020.583217] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area ‘Data & Technologies’, CBmed—Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area ‘Data & Technologies’, CBmed—Center for Biomarker Research in Medicine GmbH, Graz, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Apoptosis-Inducing Factor, Mitochondrion-Associated 3 (AIFM3) Protein Level in the Sera as a Prognostic Marker of Cholangiocarcinoma Patients. Biomolecules 2020; 10:biom10071021. [PMID: 32664187 PMCID: PMC7408035 DOI: 10.3390/biom10071021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Prognosis of cholangiocarcinoma (CCA) patients is absolutely poor. Since improvement of prognosis and/or response to treatment by personalized and precision treatments requires earlier and precise diagnostic markers, discovery of prognostic markers attracts more attention. Apoptosis-inducing factor, mitochondrion-associated 3 (AIFM3) is highly expressed in several cancers including CCA. The present study investigated whether the serum AIFM3 level can be used as a potential marker for CCA prognosis. For this purpose, we first determined secretory protein nature of AIFM3 using bioinformatic tools. The results show that although AIFM3 lacks signal peptide, it can be secreted into plasma/serum via an unconventional pathway. Then, the AIFM3 levels in the sera of 141 CCA patients and 70 healthy controls (HC) were measured using a semi-quantitative dot blot assay. The results show that the AIFM3 level in the sera of CCA group was significantly higher than that of HC. When correlation between serum AIFM3 levels and the clinicopathological parameters of CCA patients were examined, serum AIFM3 levels correlated significantly with lymph node metastasis, age, and the patients’ overall survival (OS). Higher AIFM3 levels were significantly associated with shorter OS, and only AIFM3 was an independent prognostic marker for CCA. In conclusion, AIFM3 can be used as a prognostic marker for CCA.
Collapse
|
10
|
Pant K, Richard S, Peixoto E, Gradilone SA. Role of Glucose Metabolism Reprogramming in the Pathogenesis of Cholangiocarcinoma. Front Med (Lausanne) 2020; 7:113. [PMID: 32318579 PMCID: PMC7146077 DOI: 10.3389/fmed.2020.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most lethal cancers, and its rate of occurrence is increasing annually. The diagnoses of CCA patients remain elusive due to the lack of early symptoms and is misdiagnosed as HCC in a considerable percentage of patients. It is crucial to explore the underlying mechanisms of CCA carcinogenesis and development to find out specific biomarkers for early diagnosis of CCA and new promising therapeutic targets. In recent times, the reprogramming of tumor cells metabolism has been recognized as a hallmark of cancer. The modification from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in CCA meets the demands of cancer cell proliferation and provides a favorable environment for tumor development. The alteration of metabolic programming in cancer cells is complex and may occur via mutations and epigenetic modifications within oncogenes, tumor suppressor genes, signaling pathways, and glycolytic enzymes. Herein we review the altered metabolism in cancer and the signaling pathways involved in this phenomena as they may affect CCA development. Understanding the regulatory pathways of glucose metabolism such as Akt/mTOR, HIF1α, and cMyc in CCA may further develop our knowledge of this devastating disease and may offer relevant information in the exploration of new diagnostic biomarkers and targeted therapeutic approaches for CCA.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Multifaceted Aspects of Metabolic Plasticity in Human Cholangiocarcinoma: An Overview of Current Perspectives. Cells 2020; 9:cells9030596. [PMID: 32138158 PMCID: PMC7140515 DOI: 10.3390/cells9030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly tumor without an effective therapy. Unique metabolic and bioenergetics features are important hallmarks of tumor cells. Metabolic plasticity allows cancer cells to survive in poor nutrient environments and maximize cell growth by sustaining survival, proliferation, and metastasis. In recent years, an increasing number of studies have shown that specific signaling networks contribute to malignant tumor onset by reprogramming metabolic traits. Several evidences demonstrate that numerous metabolic mediators represent key-players of CCA progression by regulating many signaling pathways. Besides the well-known Warburg effect, several other different pathways involving carbohydrates, proteins, lipids, and nucleic acids metabolism are altered in CCA. The goal of this review is to highlight the main metabolic processes involved in the cholangio-carcinogeneis that might be considered as potential novel druggable candidates for this disease.
Collapse
|
12
|
Atas E, Oberhuber M, Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Front Oncol 2020. [PMID: 33384955 DOI: 10.3389/fonc.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area 'Data & Technologies', CBmed-Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area 'Data & Technologies', CBmed-Center for Biomarker Research in Medicine GmbH, Graz, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|