1
|
Liang JL, Tsai MH, Hsieh YC, Liu HS, Chen SW, Huang YY, Lin LC, Tsai TF, Liang YF, Hsu WL. TRPC7 facilitates cell growth and migration by regulating intracellular Ca 2+ mobilization in lung adenocarcinoma cells. Oncol Lett 2023; 25:92. [PMID: 36817036 PMCID: PMC9932057 DOI: 10.3892/ol.2023.13678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Abstract
Transient receptor potential canonical 7 (TRPC7) has been reported to mediate aging-associated tumorigenesis, but the role of TRPC7 in cancer malignancy is still unclear. TRPC7 is associated with tumor size in patients with lung adenocarcinoma and the present study further evaluated the underlying mechanism of TRPC7 in the regulation of cancer progression. The clinicopathological role of TRPC7 was assessed using immunohistochemistry staining and the pathological mechanism of TRPC7 in lung adenocarcinoma cells was determined using cell cycle examination, invasion and calcium response assays, and immunoblot analysis. The results indicated that high TRPC7 expression was associated with a lower 5-year survival rate compared with low TRPC7 expression, which suggested that TRPC7 expression was inversely associated with overall survival in patients with lung adenocarcinoma. TRPC7 serves a pathological role by facilitating the enhancement of cell growth and migration with increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II, AKT and ERK. TRPC7 knockdown in lung adenocarcinoma cells restrained cell cycle progression and cell migration by interrupting the TRPC7-mediated Ca2+ signaling-dependent AKT and MAPK signaling pathways. These findings demonstrated for the first time a role of oncogenic TRPC7 in the regulation of cancer malignancy and could provide a novel therapeutic molecular target for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jui-Lin Liang
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan 701401, Taiwan, R.O.C.,Department of Surgery, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Ming-Hsien Tsai
- Department of Child Care, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, R.O.C
| | - Yi-Chun Hsieh
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Huei-Syuan Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Shao-Wei Chen
- Department of Clinical Education and Training, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yung-Yun Huang
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan, R.O.C
| | - Li-Ching Lin
- Division of General Surgery, Chang Gung Memorial Hospital, New Taipei 33303, Taiwan, R.O.C
| | - Tsung-Fu Tsai
- Department of Dermatology, Chang Gung Memorial Hospital, New Taipei 33303, Taiwan, R.O.C
| | - Yun-Fang Liang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Wen-Li Hsu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan, R.O.C.,Correspondence to: Dr Wen-Li Hsu, Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 68 Jhong Hua 3rd Road, Cianjin, Kaohsiung 80145, Taiwan, R.O.C., E-mail:
| |
Collapse
|
2
|
Oncel S, Basson MD. ZINC40099027 promotes monolayer circular defect closure by a novel pathway involving cytosolic activation of focal adhesion kinase and downstream paxillin and ERK1/2. Cell Tissue Res 2022; 390:261-279. [PMID: 36001146 DOI: 10.1007/s00441-022-03674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
ZINC40099027 (ZN27) is a specific focal adhesion kinase (FAK) activator that promotes murine mucosal wound closure after ischemic or NSAID-induced injury. Diverse motogenic pathways involve FAK, but the direct consequences of pure FAK activation have not been studied, and how ZN27-induced FAK activation stimulates wound closure remained unclear. We investigated signaling and focal adhesion (FA) turnover after FAK activation by ZN27 in Caco-2 cells, confirming key results in CCD841 cells. ZN27 increased Caco-2 FAK-Y-397, FAK-Y-576/7, paxillin-Y-118, and ERK 1/2 phosphorylation and decreased FAK-Y-925 phosphorylation, without altering FAK-Y-861, p38, Jnk, or Akt phosphorylation. ZN27 increased FAK-paxillin interaction while decreasing FAK-Grb2 association. ZN27 increased membrane-associated FAK-Y-397 and FAK-Y-576/7 phosphorylation and paxillin-Y-118 and ERK 1/2 phosphorylation but decreased FAK-Y-925 phosphorylation without altering Src or Grb2. Moreover, ZN27 increased the fluorescence intensity of GFP-FAK and pFAK-Y397 in FAs and increased the total number of FAs but reduced their size in GFP-FAK-transfected Caco-2 cells, consistent with increased FA turnover. In contrast, FAK-Y397F transfection prevented ZN27 effects on FAK size and number and FAK and pFAK fluorescent intensity in FAs. We confirmed the proposed FAK/paxillin/ERK pathway using PP2 and U0126 to block Src and MEK1/2 in Caco-2 and CCD841 cells. These results suggest that ZN27 promotes intestinal epithelial monolayer defect closure by stimulating autophosphorylation of FAK in the cytosol, distinct from classical models of FAK activation in the FA. Phosphorylated FAK translocates to the membrane, where its downstream substrates paxillin and ERK are phosphorylated, leading to FA turnover and human intestinal epithelial cell migration.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA
| | - Marc D Basson
- Department of Biomedical Sciences, Department of Surgery, Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, USA.
| |
Collapse
|
3
|
ZINC40099027 Promotes Gastric Mucosal Repair in Ongoing Aspirin-Associated Gastric Injury by Activating Focal Adhesion Kinase. Cells 2021; 10:cells10040908. [PMID: 33920786 PMCID: PMC8071155 DOI: 10.3390/cells10040908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs cause gastric ulcers and gastritis. No drug that treats GI injury directly stimulates mucosal healing. ZINC40099027 (ZN27) activates focal adhesion kinase (FAK) and heals acute indomethacin-induced small bowel injury. We investigated the efficacy of ZN27 in rat and human gastric epithelial cells and ongoing aspirin-associated gastric injury. ZN27 (10 nM) stimulated FAK activation and wound closure in rat and human gastric cell lines. C57BL/6J mice were treated with 300 mg/kg/day aspirin for five days to induce ongoing gastric injury. One day after the initial injury, mice received 900 µg/kg/6 h ZN27, 10 mg/kg/day omeprazole, or 900 µg/kg/6 h ZN27 plus 10 mg/kg/day omeprazole. Like omeprazole, ZN27 reduced gastric injury vs. vehicle controls. ZN27-treated mice displayed better gastric architecture, with thicker mucosa and less hyperemia, inflammation, and submucosal edema, and lost less weight than vehicle controls. Gastric pH, serum creatinine, serum alanine aminotransferase (ALT), and renal and hepatic histology were unaffected by ZN27. Blinded scoring of pFAK-Y-397 immunoreactivity at the edge of ZN27-treated lesions demonstrated increased FAK activation, compared to vehicle-treated lesions, confirming target activation in vivo. These results suggest that ZN27 ameliorates ongoing aspirin-associated gastric mucosal injury by a pathway involving FAK activation. ZN27-derivatives may be useful to promote gastric mucosal repair.
Collapse
|
4
|
Daina A, Zoete V. Application of the SwissDrugDesign Online Resources in Virtual Screening. Int J Mol Sci 2019; 20:ijms20184612. [PMID: 31540350 PMCID: PMC6770839 DOI: 10.3390/ijms20184612] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
SwissDrugDesign is an important initiative led by the Molecular Modeling Group of the SIB Swiss Institute of Bioinformatics. This project provides a collection of freely available online tools for computer-aided drug design. Some of these web-based methods, i.e., SwissSimilarity and SwissTargetPrediction, were especially developed to perform virtual screening, while others such as SwissADME, SwissDock, SwissParam and SwissBioisostere can find applications in related activities. The present review aims at providing a short description of these methods together with examples of their application in virtual screening, where SwissDrugDesign tools successfully supported the discovery of bioactive small molecules.
Collapse
Affiliation(s)
- Antoine Daina
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier UNIL-Sorge, Bâtiment Amphipôle, CH-1015 Lausanne, Switzerland.
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier UNIL-Sorge, Bâtiment Amphipôle, CH-1015 Lausanne, Switzerland.
- Department of Fundamental Oncology, University of Lausanne, Ludwig Lausanne Branch, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland.
| |
Collapse
|