1
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zeng J, Feng Y, Lin L, Ye H, Shen H, Sun Y. Circ_0000069 promotes the development of hepatocellular carcinoma by regulating CCL25. BMC Cancer 2024; 24:827. [PMID: 38992592 PMCID: PMC11238365 DOI: 10.1186/s12885-024-12594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Junshao Zeng
- Department of Oncology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Yi Feng
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Liwen Lin
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Huifeng Ye
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Haoming Shen
- Department of Clinical Laboratory, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Yifan Sun
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China.
| |
Collapse
|
3
|
Zhu W, Zhao R, Guan X, Wang X. The emerging roles and mechanism of N6-methyladenosine (m 6A) modifications in urologic tumours progression. Front Pharmacol 2023; 14:1192495. [PMID: 37284313 PMCID: PMC10239868 DOI: 10.3389/fphar.2023.1192495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BC), and renal cell cancer (RCC) are the most common urologic tumours in males. N6-methyladenosine (m6A), adenosine N6 methylation, is the most prevalent RNA modification in mammals. Increasing evidence suggests that m6A plays a crucial role in cancer development. In this review, we comprehensively analyzed the influence of m6A methylation on Prostate cancer, bladder cancer, and renal cell cancer and the relationship between the expression of relevant regulatory factors and their development and occurrence, which provides new insights and approaches for the early clinical diagnosis and targeted therapy of urologic malignancies.
Collapse
|
4
|
Du C, Han X, Zhang Y, Guo F, Yuan H, Wang F, Li M, Ning F, Wang W. DARS-AS1 modulates cell proliferation and migration of gastric cancer cells by regulating miR-330-3p/NAT10 axis. Open Med (Wars) 2022; 17:2036-2045. [PMID: 36568518 PMCID: PMC9755708 DOI: 10.1515/med-2022-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
The long noncoding RNA DARS-AS1 was aberrantly expressed and participated in several human cancer progressions, whereas whether DARS-AS1 is involved in human gastric cancer remains unclear. This study aimed to investigate the influence of DARS-AS1 on gastric cancer progression and explore the potential regulatory network of DARS-AS1/miR-330-3p/NAT10. The expression levels of DARS-AS1, miR-330-3p, and NAT10 were measured by quantitative real-time polymerase chain reaction. The CCK-8 assay and Transwell assay were used to determine the cell viability, migration, and invasion capacities, respectively. The target association between miR-330-3p and DARS-AS1 or NAT10 was confirmed using a luciferase reporter assay. In result, DARS-AS1 levels were elevated in tumor tissues and associated with shorter overall survival in patients with gastric cancer. Knockdown of DARS-AS1 could hamper cell viability, migration, and invasion in gastric cancer cells. DARS-AS1 acts as a competitive endogenous RNA to regulate the NAT10 expression by sponging miR-330-3p in gastric cancer cells. In conclusion, DARS-AS1 was elevated in gastric cancer, and DARS-AS1/miR-330-3p/NAT10 signaling offered some new horizons for predicting prognosis and a novel therapeutic method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chunjuan Du
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China,Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xia Han
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yanyan Zhang
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fengli Guo
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Mianli Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Weibo Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, No 324, Jingwuweiqi Road, Jinan, Shandong, 250021, China
| |
Collapse
|
5
|
CircPACRGL promoted cell proliferation, migration and invasion as well as inhibited cell apoptosis in colorectal cancer via regulation of the miR-330-3p/CNBP axis. Mol Cell Biochem 2022; 478:1633-1644. [DOI: 10.1007/s11010-022-04543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022]
|
6
|
Lysine demethylase 5A promotes prostate adenocarcinoma progression by suppressing microRNA-330-3p expression and activating the COPB2/PI3K/AKT axis in an ETS1-dependent manner. J Cell Commun Signal 2022; 16:579-599. [PMID: 35581421 PMCID: PMC9733758 DOI: 10.1007/s12079-022-00671-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine demethylase 5A (KDM5A) is a histone demethylase frequently involved in cancer progression. This research aimed to explore the function of KDM5A in prostate adenocarcinoma (PRAD) and the molecular mechanism. KDM5A was highly expressed in collected PRAD tissues and acquired PRAD cells. High KDM5A expression was correlated with reduced survival and poor prognosis of patients with PRAD. Knockdown of KDM5A suppressed the proliferation, colony formation, migration, and invasiveness of PRAD cells and reduced angiogenesis ability of endothelial cells. Downstream molecules implicated in KDM5A mediation were predicted using integrated bioinformatic analyses. KDM5A enhanced ETS proto-oncogene 1 (ETS1) expression through demethylation of H3K4me2 at its promoter. ETS1 suppressed the transcription activity of miR-330-3p, and either further ETS1 overexpression or miR-330-3p inhibition blocked the functions of KDM5A knockdown in PRAD. miR-330-3p targeted coatomer protein complex subunit β2 (COPB2) mRNA. Downregulation of miR-330-3p restored the expression of COPB2 and activated the PI3K/AKT pathway in PRAD. The results in vitro were reproduced in vivo where KDM5A downregulation suppressed the growth and metastasis of xenograft tumors in nude mice. In conclusion, this study demonstrated that KDM5A promoted PRAD by suppressing miR-330-3p and activating the COPB2/PI3K/AKT axis in an ETS1-dependent manner.
Collapse
|
7
|
Makler A, Narayanan R, Asghar W. An Exosomal miRNA Biomarker for the Detection of Pancreatic Ductal Adenocarcinoma. BIOSENSORS 2022; 12:831. [PMID: 36290970 PMCID: PMC9599289 DOI: 10.3390/bios12100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a difficult tumor to diagnose and treat. To date, PDAC lacks routine screening with no markers available for early detection. Exosomes are 40-150 nm-sized extracellular vesicles that contain DNA, RNA, and proteins. These exosomes are released by all cell types into circulation and thus can be harvested from patient body fluids, thereby facilitating a non-invasive method for PDAC detection. A bioinformatics analysis was conducted utilizing publicly available miRNA pancreatic cancer expression and genome databases. Through this analysis, we identified 18 miRNA with strong potential for PDAC detection. From this analysis, 10 (MIR31, MIR93, MIR133A1, MIR210, MIR330, MIR339, MIR425, MIR429, MIR1208, and MIR3620) were chosen due to high copy number variation as well as their potential to differentiate patients with chronic pancreatitis, neoplasms, and PDAC. These 10 were examined for their mature miRNA expression patterns, giving rise to 18 mature miRs for further analysis. Exosomal RNA from cell culture media was analyzed via RTqPCR and seven mature miRs exhibited statistical significance (miR-31-5p, miR-31-3p, miR-210-3p, miR-339-5p, miR-425-5p, miR-425-3p, and miR-429). These identified biomarkers can potentially be used for early detection of PDAC.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ramaswamy Narayanan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
8
|
Yang S, Zhang Y, Guo C, Liu R, Elkharti M, Ge Z, Liu Q, Liu S, Sun MZ. The homeostatic malfunction of a novel feedback pathway formed by lncRNA021545, miR-330-3p and epiregulin contributes in hepatocarcinoma progression via mediating epithelial-mesenchymal transition. Am J Cancer Res 2022; 12:2492-2525. [PMID: 35812040 PMCID: PMC9251696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023] Open
Abstract
A better understanding of tumor metastasis is urgently required for the treatment and prognosis of hepatocarcinoma patients. Current work contributes a novel ceRNA feedback regulation pathway composed of epiregulin (EREG), microRNA-330-3p (miR-330-3p) and long non-coding RNA 021545 (lncRNA021545) in regulating hepatocarcinoma malignancy via epithelial-mesenchymal transition (EMT) process. Closely correlated, the deficiencies of EREG and lncRNA021545 and the overexpression of miR-330-3p were involved in the clinical progression of hepatocarcinoma. In vitro results showed that 1) lncRNA021545 downregulation promoted, 2) miR-330-3p dysexpression positively correlated, and 3) EREG dysexpression reversely correlated with the migratory and invasive properties of hepatocarcinoma HCCLM3 and Huh7 cell lines. By directly binding to EREG and lncRNA021545, miR-330-3p expression change reversely correlated with their expressions in HCCLM3 and Huh7 cells, which was also confirmed in primary tumors from HCCLM3-xenograft mice in responding to miR-330-3p change. LncRNA021545 and EREG positively regulated each other, and lncRNA021545 negatively regulated miR-330-3p, while, EREG dysregulation unchanged miR-330-3p expression in hepatocarcinoma cells. Furthermore, systemic in vitro cellular characterizations showed that the malfunctions of the three molecules mediated the invasiveness of hepatocarcinoma cells via EMT process through affecting the expressions of E-cadherin, N-cadherin, vimentin, snail and slug, which was further confirmed by in vivo miR-330-3p promotion on the tumorigenicity and metastasis of HCCLM3 bearing nude mice and by in vitro miR-330-3p promotion on the migration and invasion of hepatocarcinoma cells to be antagonized by EREG overexpression through acting on EMT process. Our work indicates, that by forming a circuit signaling feedback pathway, the homeostatic expressions of lncRNA021545, miR-330-3p and EREG are important in liver health. Its collapse resulted from the downregulations of lncRNA021545 and EREG together with miR-330-3p overexpression promote hepatocarcinoma progression by enhancing the invasiveness of tumor cells through EMT activation. These discoveries suggest that miR-330-3p/lncRNA021545/EREG axis plays a critical role in hepatocarcinoma progression and as a candidate for its treatment.
Collapse
Affiliation(s)
- Siwen Yang
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Yunkun Zhang
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Chunmei Guo
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Rui Liu
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Maroua Elkharti
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Zhenhua Ge
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Qinlong Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical UniversityDalian, Liaoning, China
| | - Shuqing Liu
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| | - Ming-Zhong Sun
- College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning, China
| |
Collapse
|
9
|
Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway. CNS Neurosci Ther 2022; 28:884-896. [PMID: 35332692 PMCID: PMC9062567 DOI: 10.1111/cns.13820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Glioma is the most frequent primary cerebral tumor in adults. Recent evidence has suggested that circular RNAs (circRNAs) are associated with the pathological processes in glioma. In our study, we aimed to investigate the function and mechanism of circ_CAPG (circ_0055412) in glioma. METHODS Firstly, circ_0055412 expression was examined through RT-qPCR analysis. Loss-of-function assays and animal experiments were implemented to evaluate the role of circ_0055412 on cisplatin resistance of glioma cells. Moreover, mechanism assays were done to probe into the regulatory mechanism of circ_0055412 in glioma cells. RESULTS Circ_0055412 was found to be notably upregulated in glioma cells. Moreover, depletion of circ_0055412 enhanced cisplatin sensitivity of glioma cells in vitro and in vivo. Moreover, circ_0055412 recruited eukaryotic translation initiation factor 4A3 (EIF4A3) protein to stabilize capping actin protein, gelsolin like (CAPG) mRNA. Furthermore, circ_0055412 served as a sponge for microRNA-330-3p (miR-330-3p) and regulated nuclear factor of activated T cells 3 (NFATC3) expression to activate the transcription of catenin beta 1 (CTNNB1), thus participating in the activation of Wnt/β-catenin signaling pathway. CONCLUSION Circ_0055412 contributed to cisplatin resistance of glioma cells via stabilizing CAPG mRNA and modulating Wnt/β-catenin signaling pathway. This finding might provide novel information for the treatment of glioma.
Collapse
Affiliation(s)
- Qingjiu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiang Fu
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mahati Shaya
- Department of Oncology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yalikun Kugeluke
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shaoshan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yisireyili Dilimulati
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Circ_0120175 promotes laryngeal squamous cell carcinoma development through up-regulating SLC7A11 by sponging miR-330-3p. J Mol Histol 2022; 53:159-171. [PMID: 35142935 DOI: 10.1007/s10735-022-10061-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
The aim of our study was to illustrate the role of circular RNA 0120175 (circ_0120175) and its associated mechanism in laryngeal squamous cell carcinoma (LSCC) development. The abundance of circ_0120175, microRNA-330-3p (miR-330-3p) and solute carrier family 7, membrane 11 (SLC7A11) messenger RNA and protein was measured by quantitative real time polymerase chain reaction and Western blot assay. Cell proliferation, apoptosis, migration and invasion were assessed by cell counting kit-8 assay, flow cytometry and transwell migration and invasion assays, respectively. The interaction between miR-330-3p and circ_0120175 or SLC7A11 was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to test the function of circ_0120175 in tumor growth in vivo. Circ_0120175 abundance was aberrantly increased in LSCC tissues and cell lines, and LSCC patients with high level of circ_0120175 were associated with advanced tumor staging, lymph node metastasis and short survival time. Circ_0120175 interference suppressed cell proliferation, migration and invasion and induced cell apoptosis of LSCC cells. Circ_0120175 could sponge and negatively regulate miR-330-3p expression in LSCC cells. The addition of anti-miR-330-3p partly reversed circ_0120175 knockdown-induced effects in LSCC cells. SLC7A11 bound to miR-330-3p. Circ_0120175 enhanced the abundance of SLC7A11 through sponging miR-330-3p in LSCC cells. Circ_0120175 silencing-mediated influences in LSCC cells were partly counteracted by the overexpression of SLC7A11. Circ_0120175 interference notably suppressed xenograft tumor growth in vivo. Circ_0120175 promoted proliferation, migration and invasion while impeded cell apoptosis of LSCC cells through miR-330-3p/SLC7A11 axis, which provided novel therapeutic targets for LSCC.
Collapse
|
11
|
Gao SJ, Ren SN, Liu YT, Yan HW, Chen XB. Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:14-25. [PMID: 34589581 PMCID: PMC8455313 DOI: 10.1016/j.omto.2021.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
5-Fluorouracil (5-Fu) is a widely applied anti-cancer agent against colorectal cancer (CRC), yet a number of CRC patients have developed resistance to 5-Fu-based chemotherapy. The epidermal growth factor receptor (EGFR) is recognized as an oncogene that promotes diverse cancer progresses. In addition, long noncoding RNAs (lncRNAs) are essential regulators of cancers. Here we report that EGFR and lncRNA-FGD5-AS1 promoted 5-Fu resistance of CRC. By establishing the 5-Fu-resistant CRC cell line, we detected that EGFR, FGD5-AS1, and glucose metabolism were significantly elevated in 5-Fu-resistant CRC cells. A microRNA-microarray analysis revealed that miR-330-3p functions as a downstream effector of FGD5-AS1. FGD5-AS1 directly sponged miR-330-3p to form a competing endogenous RNA (ceRNA) network, leading to inhibition of miR-330-3p expression. Furthermore, bioinformatics analysis revealed that Hexokinase 2 (HK2) was a potential target of miR-330-3p, which was validated by luciferase assay. Rescue experiments demonstrated that FGD5-AS1 promotes glycolysis through modulating the miR-330-3p-HK2 axis, leading to 5-Fu resistance of CRC cancer cells. Finally, in vitro and in vivo xenograft experiments consistently demonstrated that inhibition of EGFR by the specific inhibitor erlotinib effectively enhanced the anti-tumor toxicity of 5-Fu by targeting the EGFR-FGD5-AS1-miR-330-3p-HK2 pathway. In summary, this study demonstrates new mechanisms of the EGFR-modulated 5-Fu resistance through modulating the noncoding RNA network, contributing to development of new approaches against chemoresistant CRC.
Collapse
Affiliation(s)
- Su-Jie Gao
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province, China
| | - Sheng-Nan Ren
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province, China
| | - Yi-Ting Liu
- Department of Radiology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, 100871 Beijing, China
| | - Hong-Wei Yan
- Department of General Surgery, Chinese Medicine Hospital, Liuhe, 135300 Jilin Province, China
| | - Xue-Bo Chen
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province, China
| |
Collapse
|
12
|
Pharmacoepigenomics circuits induced by a novel retinoid-polyamine conjugate in human immortalized keratinocytes. THE PHARMACOGENOMICS JOURNAL 2021; 21:638-648. [PMID: 34145402 DOI: 10.1038/s41397-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Retinoids are widely used in diseases spanning from dermatological lesions to cancer, but exhibit severe adverse effects. A novel all-trans-Retinoic Acid (atRA)-spermine conjugate (termed RASP) has shown previously optimal in vitro and in vivo anti-inflammatory and anticancer efficacy, with undetectable teratogenic and toxic side-effects. To get insights, we treated HaCaT cells which resemble human epidermis with IC50 concentration of RASP and analyzed their miRNA expression profile. Gene ontology analysis of their predicted targets indicated dynamic networks involved in cell proliferation, signal transduction and apoptosis. Furthermore, DNA microarrays analysis verified that RASP affects the expression of the same categories of genes. A protein-protein interaction map produced using the most significant common genes, revealed hub genes of nodal functions. We conclude that RASP is a synthetic retinoid derivative with improved properties, which possess the beneficial effects of retinoids without exhibiting side-effects and with potential beneficial effects against skin diseases including skin cancer.
Collapse
|
13
|
Jingyang Z, Jinhui C, Lu X, Weizhong Y, Yunjiu L, Haihong W, Wuyuan Z. Mir-320b Inhibits Pancreatic Cancer Cell Proliferation by Targeting FOXM1. Curr Pharm Biotechnol 2021; 22:1106-1113. [PMID: 32942974 DOI: 10.2174/1389201021999200917144704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. METHODS MicroRNAs (miRNAs) play a very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent non-tumor tissues. RESULTS Consistently, the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. DISCUSSION We next predicted miR-320b targeted FOXM1 (Forkhead box protein M1) and identified the negative relationship between miR-320b and FOXM1. We also demonstrated that elevated miR- 320b expression inhibited tumor growth in vivo. CONCLUSION All of these results showed that miR-320b suppressed pancreatic cancer cell proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Zhou Jingyang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Che Jinhui
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Xu Lu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Yang Weizhong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Li Yunjiu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wang Haihong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Zhou Wuyuan
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| |
Collapse
|
14
|
Wu XY, Xie Y, Zhou LY, Zhao YY, Zhang J, Zhang XF, Guo S, Yu XY. Long noncoding RNA POU6F2-AS1 regulates lung cancer aggressiveness through sponging miR-34c-5p to modulate KCNJ4 expression. Genet Mol Biol 2021; 44:e20200050. [PMID: 33999092 PMCID: PMC8127722 DOI: 10.1590/1678-4685-gmb-2020-0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
It has been extensively reported that long noncoding RNAs (lncRNAs) were closely associated with multiple malignancies. The aim of our study was to investigate the effects and mechanism of lncRNA POU6F2-AS1 in lung adenocarcinoma (LADC).The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets provided us the information of LADC clinical samples. High-regulation of POU6F2-AS1 was presented in LADC tissues compared with adjacent normal tissues, which was correlated with poor outcome of LADC patients. Functional experiments in Calu-3 and NCI-H460 cells showed that POU6F2-AS1 significantly promoted LADC cell proliferation, colony formation, invasion and migration. Moreover, through online prediction, luciferase reporter assay and Pearson's correlation analysis, we found that POU6F2-AS1 may act as a competing endogenous RNA (ceRNA) of miR-34c-5p and facilitated the expression of potassium voltage-gated channel subfamily J member 4 (KCNJ4). The promoting effect of cell aggressiveness induced by POU6F2-AS1 was enhanced by KCNJ4, whilst was abrogated due to the overexpression of miR-34c-5p. Collectively, POU6F2-AS1 might function as a ceRNA through sponging miR-34c-5p to high-regulate KCNJ4 in LADC, which indicates that POU6F2-AS1 might be a promising therapeutic target with significant prognostic value for LADC treatment.
Collapse
Affiliation(s)
- Xiao-Yan Wu
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Yi Xie
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Li-Yun Zhou
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Yuan-Yuan Zhao
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Jing Zhang
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Xiu-Feng Zhang
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Shuai Guo
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| | - Xue-Yan Yu
- Shandong Chest Hospital, Department of Respiratory Medicine,
Jinan, Shandong, China
| |
Collapse
|
15
|
Qin G, Wu X. Hsa_circ_0032463 acts as the tumor promoter in osteosarcoma by regulating the miR‑330‑3p/PNN axis. Int J Mol Med 2021; 47:92. [PMID: 33786605 PMCID: PMC8012025 DOI: 10.3892/ijmm.2021.4925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS), also known as bone cancer, is a threat to the lives of millions of adolescents worldwide. Although dedicated efforts have been invested in reducing the mortality rate of this bone cancer, the research community is yet to find the exact causes of OS. Thus, the present research aimed to study the association between circular RNA circ_0032463 and OS progression. The impact of circ_0032463 on cells with OS was first evaluated using reverse transcription-quantitative PCR. This evaluation was followed by the assessment of cell proliferation, viability, apoptosis, invasion and adhesion using BrdU, Cell Counting Kit-8, flow cytometry, Transwell and cell adhesion assays, respectively. RNA pull-down, RNA immunoprecipitation chip and dual-luciferase reporter systems were utilized to investigate the relationship between circ_0032463, microRNA (miR)-330-3p and Pinin desmosome associated protein (PNN) in OS. The findings indicated that circ_0032463 and PNN were highly expressed in OS tissues and OS cell lines, and that they facilitated cell proliferation, viability, invasion and adhesion, but attenuated cell apoptosis in OS cells. The low expression of miR-330-3p suppressed OS development. It was also noted that circ_0032463 inhibited miR-330-3p to upregulate PNN expression. In conclusion, this study confirmed that by regulating the miR-330-3p/PNN axis, circular RNA circ_0032463 could function as a tumor enhancer in cells with OS.
Collapse
Affiliation(s)
- Guanghua Qin
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
16
|
Li H, Tong F, Meng R, Peng L, Wang J, Zhang R, Dong X. E2F1-mediated repression of WNT5A expression promotes brain metastasis dependent on the ERK1/2 pathway in EGFR-mutant non-small cell lung cancer. Cell Mol Life Sci 2021; 78:2877-2891. [PMID: 33078208 PMCID: PMC11072416 DOI: 10.1007/s00018-020-03678-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Brain metastasis (BM) is associated with poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutation reportedly enhances the development of BM. However, the exact mechanism of how EGFR-mutant NSCLC contributes to BM remains unknown. Herein, we found the protein WNT5A, was significantly downregulated in BM tissues and EGFR-mutant samples. In addition, the overexpression of WNT5A inhibited the growth, migration, and invasion of EGFR-mutant cells in vitro and retarded tumor growth and metastasis in vivo compared with the EGFR wide-type cells. We demonstrated a molecular mechanism whereby WNT5A be negatively regulated by transcription factor E2F1, and ERK1/2 inhibitor (U0126) suppressed E2F1's regulation of WNT5A expression in EGFR-mutant cells. Furthermore, WNT5A inhibited β-catenin activity and the transcriptional levels of its downstream genes in cancer progression. Our research revealed the role of WNT5A in NSCLC BM with EGFR mutation, and proved that E2F1-mediated repression of WNT5A was dependent on the ERK1/2 pathway, supporting the notion that targeting the ERK1/2-E2F1-WNT5A pathway could be an effective strategy for treating BM in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Huanhuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiaojiao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
17
|
Cai L, Ye L, Hu X, He W, Zhuang D, Guo Q, Shu K, Jie Y. MicroRNA miR-330-3p suppresses the progression of ovarian cancer by targeting RIPK4. Bioengineered 2021; 12:440-449. [PMID: 33487072 PMCID: PMC8291835 DOI: 10.1080/21655979.2021.1871817] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies reported that miR-330-3p was involved in the progression of several cancers, but the potential roles of miR-330-3p in ovarian cancer (OC) were unclear. In the current study, we aimed to explore the expression pattern and functions of miR-330-3p in OC. The expression level of miR-330-3p in OC tissues and cell lines was detected using RT-qPCR. The proliferation, migration and invasion of OC cells were detected using CCK-8 assay and transwell assay, respectively. Bioinformatics analysis and luciferase reporter assay were used to analyze the targeted binding
site of miR-330-3p and RIPK4. The results showed that miR-330-3p was significantly downregulated in OC tissues and cell lines. Overexpression of miR-330-3p inhibited the proliferation, migration and invasion of OC cells. Mechanistically, a dual-luciferase reported assay showed that RIPK4 is a target gene of miR-330-3p. Furthermore, rescue experiments revealed that miR-330-3p suppressed the proliferation, migration and invasion of OC cells by targeting RIPK4. In summary, our findings indicated that miR-330-3p suppressed the progression of OC by targeting RIPK4. Our results indicated that miR-330-3p/RIPK4 axis might act as a novel therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Li Cai
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Lu Ye
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Xiaoqing Hu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Debao Zhuang
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Qi Guo
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Kuanyong Shu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Youkun Jie
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Yang C, Mou Z, Zhang Z, Wu S, Zhou Q, Chen Y, Gong J, Xu C, Ou Y, Chen X, Dai X, Jiang H. Circular RNA RBPMS inhibits bladder cancer progression via miR-330-3p/RAI2 regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:872-886. [PMID: 33614236 PMCID: PMC7868720 DOI: 10.1016/j.omtn.2021.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Bladder cancer is a severe cancer with high mortality because of invasion and metastasis. Growing evidence has revealed that circular RNAs play critical roles in biological function, which is closely connected to proliferation and invasion of bladder cancer. In our study, we employed qRT-PCR, RNA fluorescence in situ hybridization (FISH), 5-ethynyl-2′-deoxyuridine (EdU), CCK-8, Transwell assays, luciferase reporter assays, xenografts, and live imaging to detect the roles of circular RNA binding protein with multiple splicing (circRBPMS) in bladder cancer (BC). Bioinformatics analysis and WB were performed to investigate the regulatory mechanism. Expression profile analysis of circular RNAs (circRNAs) in BC revealed that circRBPMS was significantly downregulated. Low circRBPMS expression correlates with aggressive BC phenotypes, whereas upregulation of circRBPMS suppresses BC cell proliferation and metastasis by directly targeting the miR-330-3p/ retinoic acid induced 2 (RAI2) axis. miR-330-3p upregulation or silencing of RAI2 restored BC cell proliferation, invasion, and migration following overexpression of circRBPMS. RAI2 silencing reversed miR-330-3p-induced cell invasion and migration as well as growth inhibition in vitro. Moreover, through bioinformatic analysis of the downstream target of RAI2 in the TCGA database, we identified and validated the biological role of circRBPMS through the RAI2-mediated ERK and epithelial-mesenchymal transition (EMT) pathways. We summarize the circRBPMS/miR-330-3p/RAI2 axis, where circRBPMS acts as a tumor suppressor, and provide a potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai 200040, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Gong
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
19
|
Li Q, Wang W, Zhang M, Sun W, Shi W, Li F. Circular RNA circ-0016068 Promotes the Growth, Migration, and Invasion of Prostate Cancer Cells by Regulating the miR-330-3p/BMI-1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2020; 8:827. [PMID: 32984325 PMCID: PMC7479067 DOI: 10.3389/fcell.2020.00827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a common neoplasm worldwide, and the sixth most common cause of cancer-related mortality. Biomarkers for earlier diagnosis and improved treatment alternatives are critical. Circular RNAs (circRNAs) can promote the growth and progression of various cancers; however, prostate cancer-specific circRNAs have not been found. We identified circ-0016068, a circRNA that was expressed more strongly in prostate cancer tumors vs. normal paired tissue, and confirmed its relatively high expression in prostate cancer tissues and cell lines. We also discerned that circ-0016068 promotes the epithelial-to-mesenchymal transition (EMT) and the growth, migration, and invasion of prostate cancer cells in vitro; and promotes the growth and metastasis of tumors in a mouse model of prostate cancer. Moreover, we found that circ-0016068 competes with the B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) for binding to miR-330-3p. In so doing, circ-0016068 sequesters miR-330-3p and frees BMI-1 to enhance the proliferation, migration, and invasion of prostate cancer cells, and the metastasis of xenograft tumors. These results suggest that circ-0016068 may be a promising diagnostic biomarker for early stage prostate cancer and a potential target for novel cancer therapeutics.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Wang
- Department of Urology, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Min Zhang
- Department of Urology, Jinan City People's Hospital, Jinan, China
| | - Wenguo Sun
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Shi
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Feng Li
- School of Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Zhu B, Liu W, Liu H, Xu Q, Xu W. LINC01094 Down-Regulates miR-330-3p and Enhances the Expression of MSI1 to Promote the Progression of Glioma. Cancer Manag Res 2020; 12:6511-6521. [PMID: 32801889 PMCID: PMC7395698 DOI: 10.2147/cmar.s254630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/23/2020] [Indexed: 01/15/2023] Open
Abstract
Background This study aims at probing into the expression, function, and mechanism of LINC01094 and miR-330-3p in glioma. Materials and Methods qRT-PCR was employed to examine LINC01094 and miR-330-3p expressions in gliomas. After gain-of-function and loss-of-function models were constructed, CCK-8 and Transwell assays were used to detect the proliferation, migration and invasion of LN229 and U251 cells, respectively. Additionally, dual luciferase reporter gene assay was utilized to verify the binding site between m4iR-330-3p and LINC01094, miR-330-3p, and the 3ʹUTR of musashi RNA binding protein 1 (MSI1). Then, RNA pull-down, RIP, qRT-PCR and Western blot were employed to detect the regulatory relationships among LINC01094, miR-330-3p, and MSI1. Results The expression of LINC01094 was elevated in glioma tissues and cell lines, and the high expression of LINC01094 was associated with high grade of glioma. In contrast, miR-330-3p was lowly expressed in glioma tissue. Overexpression of LINC01094 or down-regulation of miR-330-3p promoted the proliferation, migration, and invasion of glioma cells, while LINC01094 knockdown or miR-330-3p up-regulation impeded these processes. miR-330-3p was identified as a target miRNA of LINC01094, and it could be negatively regulated by LINC01094. In addition, miR-330-3p antagonized the function of LINC01094 by negatively regulating MSI1. Conclusion LINC01094 promotes the proliferation, migration, and invasion of glioma cells by adsorbing miR-330-3p and up-regulating the expression of MSI1.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Neurosurgery, Huashan North Hospital, Baoshan Branch, Fudan University, Shanghai 200431, People's Republic of China
| | - Wei Liu
- Department of Neurosurgery, Huashan North Hospital, Baoshan Branch, Fudan University, Shanghai 200431, People's Republic of China
| | - Hongliang Liu
- Department of Neurosurgery, Huashan North Hospital, Baoshan Branch, Fudan University, Shanghai 200431, People's Republic of China
| | - Qiang Xu
- Department of Neurosurgery, Huashan North Hospital, Baoshan Branch, Fudan University, Shanghai 200431, People's Republic of China
| | - Wei Xu
- Department of Neurosurgery, Huashan North Hospital, Baoshan Branch, Fudan University, Shanghai 200431, People's Republic of China
| |
Collapse
|
21
|
Ma B, Ma J, Yang Y, He X, Pan X, Wang Z, Qian Y. Effects of miR-330-3p on Invasion, Migration and EMT of Gastric Cancer Cells by Targeting PRRX1-Mediated Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:3411-3423. [PMID: 32368097 PMCID: PMC7183782 DOI: 10.2147/ott.s238665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/05/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND miRNA, as a biological marker, had more and more attention in recent years due to the important role it plays in cancer. Currently, there are extensive studies on miRNAs, among which miR-330-3p is reported to be implicated in the pathophysiological processes of various cancers. However, little progress has been made in the mechanism of miR-330-3p in gastric cancer. OBJECTIVE To explore the expression and relevant mechanism of miR-330-3p and PRRX1 in gastric cancer (GC). METHODS Forty-five GC patients (study group), from whom paired GC and paracancerous tissues were collected, and another 45 healthy subjects (control group) who underwent physical examination during the same period were enrolled. In addition, GC cells and human gastric mucosa cells were purchased, and miR-330-3p-mimics, miR-330-3p-inhibitor, miR-NC, si-PRRX1, and sh-PRRX1 were transfected into MKN45, SGC7901 cell. QRT-PCR was employed to assess the miR-330-3p and PRRX1 expressions in the samples, and the cell expressions of PRRX1, GSK-3β, p-GSK-3β, β-catenin, p-β-catenin, cyclin D1, N-cadherin, E-cadherin and vimentin were evaluated by Western blot (WB). MTT, Transwell and wound-healing experiments were adopted to detect cell proliferation, invasion and migration. RESULTS MiR-330-3p was under-expressed, while PRRX1 was highly expressed in the serum of patients, both of which had an area under the curve (AUC) of more than 0.9. MiR-330-3p and PRRX1 were associated with tumor diameter, TNM staging, lymph node metastasis and differentiation of GC patients. Overexpression of miR-330-3p and inhibition of PRRX1 expression could suppress epithelial-mesenchymal transition (EMT), proliferation, invasion and apoptosis of cells. What is more, WB assay showed that overexpressed miR-330-3p and inhibited PRRX1 could inhibit the expression levels of p-GSK-3β, β-catenin, cyclin D1, N-cadherin and vimentin proteins, while elevating GSK-3β, p-β-catenin and E-cadherin protein expressions. Dual-luciferase reporter assay confirmed that there was a targeting relation between miR-330-3p and PRRX1. Furthermore, rescue experiments revealed that the cell proliferation, invasion, migration did not differ significantly between co-transfected miR-330-3p-mimics+sh-PRRX1, miR-330-3p-inhibitor+si-PRRX1 groups of MKN45 and SGC7901 and the miR-NC group (without transfected sequences). CONCLUSION Overexpressed miR-330-3p can promote cell EMT, proliferation, invasion and apoptosis through inhibiting PRRX1-mediated Wnt/β-catenin signaling pathway, which is expected to be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bingqiang Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jianxun Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yili Yang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xueyuan He
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xinmin Pan
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Zhan Wang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yaowen Qian
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|