1
|
Ma Z, Gu Q, Dai Y, Wang Q, Shi W, Jiao Z. Therapeutic potential of SHCBP1 inhibitor AZD5582 in pancreatic cancer treatment. Cancer Sci 2024; 115:820-835. [PMID: 38151993 PMCID: PMC10921007 DOI: 10.1111/cas.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive and deadly malignancy with limited treatment options and poor prognosis. Identifying new therapeutic targets and developing effective strategies for PC treatment is of utmost importance. Here, we revealed that SHCBP1 is significantly overexpressed in PC and negatively correlated with patient prognosis. Knockout of SHCBP1 inhibits the proliferation and migration of PC cells in vitro, and suppresses the tumor growth in vivo. In addition, we identified AZD5582 as a novel inhibitor of SHCBP1, which efficiently restrains the growth of PC in cell lines, organoids, and patient-derived xenografts. Mechanistically, we found that AZD5582 induced the apoptosis of PC cells by inhibiting the activity of PI3K/AKT signaling and preventing the degradation of TP53. Collectively, our study highlights SHCBP1 as a potential therapeutic target and its inhibitor AZD5582 as a viable agent for PC treatment strategies.
Collapse
Affiliation(s)
- Zhijian Ma
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Qianlin Gu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Yiwei Dai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Qiaoyan Wang
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Wengui Shi
- Cuiying Biomedical Research CenterLanzhou University Second HospitalLanzhouChina
| | - Zuoyi Jiao
- The Department of General SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
2
|
Identification of Recurrent Chromosome Breaks Underlying Structural Rearrangements in Mammary Cancer Cell Lines. Genes (Basel) 2022; 13:genes13071228. [PMID: 35886011 PMCID: PMC9319013 DOI: 10.3390/genes13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer genomes are characterized by the accumulation of small-scale somatic mutations as well as large-scale chromosomal deletions, amplifications, and complex structural rearrangements. This characteristic is at least partially dependent on the ability of cancer cells to undergo recurrent chromosome breakage. In order to address the extent to which chromosomal structural rearrangement breakpoints correlate with recurrent DNA double-strand breaks (DSBs), we simultaneously mapped chromosome structural variation breakpoints (using whole-genome DNA-seq) and spontaneous DSB formation (using Break-seq) in the estrogen receptor (ER)-positive breast cancer cell line MCF-7 and a non-cancer control breast epithelium cell line MCF-10A. We identified concurrent DSBs and structural variation breakpoints almost exclusively in the pericentromeric region of chromosome 16q in MCF-7 cells. We fine-tuned the identification of copy number variation breakpoints on 16q. In addition, we detected recurrent DSBs that occurred in both MCF-7 and MCF-10A. We propose a model for DSB-driven chromosome rearrangements that lead to the translocation of 16q, likely with 10q, and the eventual 16q loss that does not involve the pericentromere of 16q. We present evidence from RNA-seq data that select genes, including SHCBP1, ORC6, and MYLK3, which are immediately downstream from the 16q pericentromere, show heightened expression in MCF-7 cell line compared to the control. Data published by The Cancer Genome Atlas show that all three genes have increased expression in breast tumor samples. We found that SHCBP1 and ORC6 are both strong poor prognosis and treatment outcome markers in the ER-positive breast cancer cohort. We suggest that these genes are potential oncogenes for breast cancer progression. The search for tumor suppressor loss that accompanies the 16q loss ought to be augmented by the identification of potential oncogenes that gained expression during chromosomal rearrangements.
Collapse
|
3
|
Crassolide Induces G2/M Cell Cycle Arrest, Apoptosis, and Autophagy in Human Lung Cancer Cells via ROS-Mediated ER Stress Pathways. Int J Mol Sci 2022; 23:ijms23105624. [PMID: 35628435 PMCID: PMC9144222 DOI: 10.3390/ijms23105624] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 02/07/2023] Open
Abstract
Crassolide, a cembranoid diterpene extracted from the soft coral Lobophytum crissum, has been proven to possess antioxidant and immunomodulatory properties. In the present study, we assessed the anticancer effects of crassolide on human H460 non-small-cell lung cancer (NSCLC) cells. We found that crassolide exerted cytotoxic effects on H460 cancer cells in vitro, inducing G2/M phase arrest and apoptosis. In addition, in H460 cells exposed to crassolide, the expression of the autophagy-related proteins LC3-II and beclin was increased, while the expression of p62 was decreased. Moreover, inhibiting autophagy with chloroquine (CQ) suppressed the crassolide-induced G2/M arrest and apoptosis of H460 cells. Moreover, we also found that crassolide induced endoplasmic reticulum (ER) stress in lung cancer cells by increasing the expression of ER stress marker proteins and that the crassolide-induced G2/M arrest, apoptosis, and autophagy were markedly attenuated by the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Furthermore, we found that crassolide promoted reactive oxygen species (ROS) production by H460 cells and that the ROS inhibitor N-acetylcysteine (NAC) decreased the crassolide-induced ER stress, G2/M arrest, apoptosis, and autophagy. In conclusion, our findings show that crassolide inhibits NSCLC cell malignant biological behaviors for the first time, suggesting that this effect may be mechanistically achieved by inducing G2/M arrest, apoptosis, and autophagy through ROS accumulation, which activates the ER stress pathway. As a result of our findings, we now have a better understanding of the molecular mechanism underlying the anticancer effect of crassolide, and we believe crassolide might be a candidate for targeted cancer therapy.
Collapse
|
4
|
Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res 2021; 11:5833-5855. [PMID: 35018228 PMCID: PMC8727805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor suppressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their pathological development. On the basis of a large number of related studies, this study describes in detail the structure, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to provide some directions for experimental research and clinical treatment of tumors.
Collapse
Affiliation(s)
- Qinyi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
5
|
Classification and Functional Analysis between Cancer and Normal Tissues Using Explainable Pathway Deep Learning through RNA-Sequencing Gene Expression. Int J Mol Sci 2021; 22:ijms222111531. [PMID: 34768960 PMCID: PMC8584109 DOI: 10.3390/ijms222111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022] Open
Abstract
Deep learning has proven advantageous in solving cancer diagnostic or classification problems. However, it cannot explain the rationale behind human decisions. Biological pathway databases provide well-studied relationships between genes and their pathways. As pathways comprise knowledge frameworks widely used by human researchers, representing gene-to-pathway relationships in deep learning structures may aid in their comprehension. Here, we propose a deep neural network (PathDeep), which implements gene-to-pathway relationships in its structure. We also provide an application framework measuring the contribution of pathways and genes in deep neural networks in a classification problem. We applied PathDeep to classify cancer and normal tissues based on the publicly available, large gene expression dataset. PathDeep showed higher accuracy than fully connected neural networks in distinguishing cancer from normal tissues (accuracy = 0.994) in 32 tissue samples. We identified 42 pathways related to 32 cancer tissues and 57 associated genes contributing highly to the biological functions of cancer. The most significant pathway was G-protein-coupled receptor signaling, and the most enriched function was the G1/S transition of the mitotic cell cycle, suggesting that these biological functions were the most common cancer characteristics in the 32 tissues.
Collapse
|
6
|
Shi W, Zhang G, Ma Z, Li L, Liu M, Qin L, Yu Z, Zhao L, Liu Y, Zhang X, Qin J, Ye H, Jiang X, Zhou H, Sun H, Jiao Z. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun 2021; 12:2812. [PMID: 33990570 PMCID: PMC8121856 DOI: 10.1038/s41467-021-23053-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.
Collapse
Affiliation(s)
- Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Gengyuan Zhang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zhijian Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zeyuan Yu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Lei Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Yang Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xue Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Junjie Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiangyan Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Huinian Zhou
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
7
|
Geng H, Guo M, Xu W, Zang X, Wu T, Teng F, Wang Y, Liu X, Wang X, Sun Q, Liang J. SHCBP1 Promotes Papillary Thyroid Carcinoma Carcinogenesis and Progression Through Promoting Formation of Integrin and Collagen and Maintaining Cell Stemness. Front Endocrinol (Lausanne) 2021; 11:613879. [PMID: 33716952 PMCID: PMC7953042 DOI: 10.3389/fendo.2020.613879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer with a rapidly increasing incidence globally. Bioinformatics analyses suggested that SHCBP1 (SHC SH2 Domain-Binding Protein 1) was significantly up-regulated in PTC tumor tissues, which was further confirmed by immunohistochemical staining and qPCR analyses in Xuzhou cohort. Moreover, the results indicated that the mRNA level of SHCBP1 was negatively associated with patients' disease-free survival rate, and further analysis reveals that patients with high SHCBP1 expression tend to have more lymph node metastasis. Afterward, MTT, colony formation, cell-cycle assay, FACS apoptosis assay, invasion, migration, as well as scratch assay were performed to study the phenotypes change of PTC cells after knocking down SHCBP1. The in vivo subcutaneous tumor model was developed to study the proliferation ability of PTC cells after SHCBP1 knockdown. We show that knock down of SHCBP1 significantly inhibits PTC cell proliferation, cell cycle, invasion and migration in vivo and in vitro. Western blot and qRT-PCR showed that knockdown of SHCBP1 could significantly reduce MYC, KLF4, CD44, ITGA6, ITGB1, ITGB5, and COL4A2 expression at both RNA and protein levels, which indicated that SHCBP1 might be involved in PTC carcinogenesis and progression through targeting formation of integrin and collagen and cell stemness pathways, and can be a potential diagnosis biomarker and therapeutic target for PTC.
Collapse
Affiliation(s)
- Houfa Geng
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wei Xu
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Xiu Zang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Tingting Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Fei Teng
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Yu Wang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Xuekui Liu
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Xiuli Wang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Qiang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jun Liang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
- Xuzhou Institute of Medical Science, Postgraduate Workstation of Soochow University, Xuzhou, China
| |
Collapse
|
8
|
Jiang Y, Xiao F, Wang L, Wang T, Chen L. Circular RNA has_circ_0000034 accelerates retinoblastoma advancement through the miR-361-3p/ADAM19 axis. Mol Cell Biochem 2020; 476:69-80. [PMID: 32844346 DOI: 10.1007/s11010-020-03886-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022]
Abstract
Retinoblastoma (RB) is an intraocular malignancy that mainly occurs in infants and young children under 5 years of age. Circular RNA hsa_circ_0000034 (circ_0000034) was reported to be upregulated in RB tissues. Nevertheless, the function and mechanism of circ_0000034 in RB are unclear. Expression of circ_0000034, microRNA-361-3p (miR-361-3p), and a disintegrin and metalloproteinase 19 (ADAM19) was examined via quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, migration, invasion, and apoptosis were determined though Cell Counting Kit-8 (CCK-8), transwell, or flow cytometry assays. Caspase-3 activity was detected using a caspase-3 activity assay kit. Some protein levels were examined using Western blot analysis. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay were performed to verify the relationship between circ_0000034 or ADAM19 and miR-361-3p. The function of circ_0000034 in vivo was confirmed via animal experiment. We verified that circ_0000034 expression was elevated in RB tissues and cells. Circ_0000034 silencing reduced RB growth in vivo, repressed viability, migration, invasion, and EMT, and induced apoptosis of RB cells in vitro. Circ_0000034 acted as a sponge for miR-361-3p, which targeted ADAM19 in RB cells. Furthermore, the inhibition of miR-361-3p restored circ_0000034 knockdown-mediated impacts on viability, migration, invasion, apoptosis, and EMT of RB cells. Moreover, ADAM19 overexpression abolished the influence of miR-361-3p mimic on viability, migration, invasion, apoptosis, and EMT of RB cells. Circ_0000034 expedited RB progression through upregulating ADAM19 via sponging miR-361-3p, which indicated that circ_0000034 might a target for RB therapy.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Huanggu District, Shenyang, 110031, Liaoning, China
| | - Fan Xiao
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Huanggu District, Shenyang, 110031, Liaoning, China
| | - Lin Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Huanggu District, Shenyang, 110031, Liaoning, China
| | - Ting Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Huanggu District, Shenyang, 110031, Liaoning, China
| | - Linlin Chen
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, No. 20 Huanghe South Street, Huanggu District, Shenyang, 110031, Liaoning, China.
| |
Collapse
|
9
|
A Novel 4-Gene Score to Predict Survival, Distant Metastasis and Response to Neoadjuvant Therapy in Breast Cancer. Cancers (Basel) 2020; 12:cancers12051148. [PMID: 32370309 PMCID: PMC7281399 DOI: 10.3390/cancers12051148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
We generated a 4-gene score with genes upregulated in LM2-4, a metastatic variant of MDA-MB-231 (DOK 4, HCCS, PGF, and SHCBP1) that was strongly associated with disease-free survival (DFS) in TCGA cohort (hazard ratio [HR]>1.2, p < 0.02). The 4-gene score correlated with overall survival of TCGA (HR = 1.44, p < 0.001), which was validated with DFS and disease-specific survival of METABRIC cohort. The 4-gene score was able to predict worse survival or clinically aggressive tumors, such as high Nottingham pathological grade and advanced cancer staging. High score was associated with worse survival in the hormonal receptor (HR)-positive/Her2-negative subtype. High score enriched cell proliferation-related gene sets in GSEA. The score was high in primary tumors that originated, in and metastasized to, brain and lung, and it predicted worse progression-free survival for metastatic tumors. Good tumor response to neoadjuvant chemotherapy or hormonal therapy was accompanied by score reduction. High scores were also predictive of response to neoadjuvant chemotherapy for HR-positive/Her2-negative subtype. High score tumors had increased expression of T cell exhaustion marker genes, suggesting that the score may also be a biomarker for immunotherapy response. Our novel 4-gene score with both prognostic and predictive values may, therefore, be clinically useful particularly in HR-positive breast cancer.
Collapse
|