1
|
Lin B, Wang K, Yuan Y, Wang Y, Liu Q, Wang Y, Sun J, Wang W, Wang H, Zhou S, Jin K, Zhang M, Lai Y. A novel approach to the analysis of Overall Survival (OS) as response with Progression-Free Interval (PFI) as condition based on the RNA-seq expression data in The Cancer Genome Atlas (TCGA). BMC Bioinformatics 2024; 25:300. [PMID: 39271985 PMCID: PMC11395968 DOI: 10.1186/s12859-024-05897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Overall Survival (OS) and Progression-Free Interval (PFI) as survival times have been collected in The Cancer Genome Atlas (TCGA). It is of biomedical interest to consider their dependence in pathway detection and survival prediction. We intend to develop novel methods for integrating PFI as condition based on parametric survival models for identifying pathways associated with OS and predicting OS. RESULTS Based on the framework of conditional probability, we developed a family of frailty-based parametric-models for this purpose, with exponential or Weibull distribution as baseline. We also considered two classes of existing methods with PFI as a covariate. We evaluated the performance of three approaches by analyzing RNA-seq expression data from TCGA for lung squamous cell carcinoma and lung adenocarcinoma (LUNG), brain lower grade glioma and glioblastoma multiforme (GBMLGG), as well as skin cutaneous melanoma (SKCM). Our focus was on fourteen general cancer-related pathways. The 10-fold cross-validation was employed for the evaluation of predictive accuracy. For LUNG, p53 signaling and cell cycle pathways were detected by all approaches. Furthermore, three approaches with the consideration of PFI demonstrated significantly better predictive performance compared to the approaches without the consideration of PFI. For GBMLGG, ten pathways (e.g., Wnt signaling, JAK-STAT signaling, ECM-receptor interaction, etc.) were detected by all approaches. Furthermore, three approaches with the consideration of PFI demonstrated better predictive performance compared to the approaches without the consideration of PFI. For SKCM, p53 signaling pathway was detected only by our Weibull-baseline-based model. And three approaches with the consideration of PFI demonstrated significantly better predictive performance compared to the approaches without the consideration of PFI. CONCLUSIONS Based on our study, it is necessary to incorporate PFI into the survival analysis of OS. Furthermore, PFI is a survival-type time, and improved results can be achieved by our conditional-probability-based approach.
Collapse
Affiliation(s)
- Bo Lin
- School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kaipeng Wang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yuan Yuan
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yueguo Wang
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Qingyuan Liu
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, 230009, Anhui, China
| | - Yulan Wang
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jian Sun
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenwen Wang
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Huanli Wang
- Department of Information Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shusheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kui Jin
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Mengping Zhang
- School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yinglei Lai
- School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- Department of Statistics, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Mantile F, Kisovec M, Adamo G, Romancino DP, Hočevar M, Božič D, Bedina Zavec A, Podobnik M, Stoppelli MP, Kisslinger A, Bongiovanni A, Kralj-Iglič V, Liguori GL. A Novel Localization in Human Large Extracellular Vesicles for the EGF-CFC Founder Member CRIPTO and Its Biological and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14153700. [PMID: 35954365 PMCID: PMC9367246 DOI: 10.3390/cancers14153700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Tumor growth and metastasis strongly rely on cell–cell communication. One of the mechanisms by which tumor cells communicate involves the release and uptake of lipid membrane encapsulated particles full of bioactive molecules, called extracellular vesicles (EVs). EV exchange between cancer cells may induce phenotype changes in the recipient cells. Our work investigated the effect of EVs released by teratocarcinoma cells on glioblastoma (GBM) cells. EVs were isolated by differential centrifugation and analyzed through Western blot, nanoparticle tracking analysis, and electron microscopy. The effect of large EVs on GBM cells was tested through cell migration, proliferation, and drug-sensitivity assays, and resulted in a specific impairment in cell migration with no effects on proliferation and drug-sensitivity. Noticeably, we found the presence of the EGF-CFC founder member CRIPTO on both small and large EVs, in the latter case implicated in the EV-mediated negative regulation of GBM cell migration. Our data let us propose a novel route and function for CRIPTO during tumorigenesis, highlighting a complex scenario regulating its effect, and paving the way to novel strategies to control cell migration, to ultimately improve the prognosis and quality of life of GBM patients.
Collapse
Affiliation(s)
- Francesca Mantile
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy; (F.M.); (M.P.S.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.); (M.P.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), CNR, 90146 Palermo, Italy; (G.A.); (D.P.R.); (A.B.)
| | - Daniele P. Romancino
- Institute for Research and Biomedical Innovation (IRIB), CNR, 90146 Palermo, Italy; (G.A.); (D.P.R.); (A.B.)
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Darja Božič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.B.); (V.K.-I.)
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.); (M.P.)
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy; (F.M.); (M.P.S.)
| | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR) of Italy, 80131 Naples, Italy;
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB), CNR, 90146 Palermo, Italy; (G.A.); (D.P.R.); (A.B.)
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.B.); (V.K.-I.)
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy; (F.M.); (M.P.S.)
- Correspondence:
| |
Collapse
|
3
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
4
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
5
|
Ishii H, Zahra MH, Takayanagi A, Seno M. A Novel Artificially Humanized Anti-Cripto-1 Antibody Suppressing Cancer Cell Growth. Int J Mol Sci 2021; 22:ijms22041709. [PMID: 33567764 PMCID: PMC7915030 DOI: 10.3390/ijms22041709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library. Then, the variable regions of heavy chain VH and light chain VL in each clone were fused to constant regions of heavy chain CH and light chain CL regions respectively. These fused genes were expressed in ExpiCHO-S cells to produce artificial humanized antibodies against Cripto-1. After evaluation of the expression levels, one clone was selected and the anti-Cripto-1 antibody was produced and purified. The purified antibody showed affinity to recombinant Cripto-1 at 1.1 pmol and immunoreactivity to cancer tissues and cell lines. The antibody was available to detect the immunoreactivity in tissue microarrays of malignant tumors as well as in Cripto-1 overexpressing cells. Simultaneously, the antibody exhibited the potential to suppress the growth of human colon cancer derived GEO cells overexpressing Cripto-1 with IC50 at approximately 110 nM. The artificially humanized antibody is proposed to be a good candidate to target cancer cells overexpressing Cripto-1.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan; (H.I.); (A.T.)
| | - Maram H. Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Atushi Takayanagi
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwaku, Osaka 556-0017, Japan; (H.I.); (A.T.)
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Correspondence: ; Tel./Fax: +81-86-251-8216
| |
Collapse
|
6
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
7
|
Chen V, Iwama E, Kim IK, Giaccone G. Serum CRIPTO does not confer drug resistance against osimertinib but is an indicator of tumor burden in non-small cell lung cancer. Lung Cancer 2020; 145:48-57. [PMID: 32408132 DOI: 10.1016/j.lungcan.2020.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC) and often harbors oncogenic driver mutations in the epidermal growth factor receptor (EGFR). Osimertinib (AZD9291), a third generation EGFR TKI, has replaced earlier generation EGFR TKIs for first line treatment of EGFR mutant lung cancer due to its improved overall survival, longer progression free survival, and better tolerability compared to earlier generation inhibitors. However, like earlier generation EGFR TKIs, only about two thirds of patients respond, indicating an unknown mechanism of intrinsic resistance for the non-responders. We previously identified overexpression of CRIPTO as a potential mechanism of intrinsic resistance to EGFR TKIs of first and second generation. OBJECTIVE To determine if CRIPTO could promote drug resistance against the third generation EGFR-TKIs osimertinib. We also wanted to investigate whether this resistance was conferred by both membrane bound and secreted CRIPTO. Finally, we wanted to explore the potential of secreted CRIPTO as a non-invasive biomarker for EGFR-TKI resistance. MATERIALS AND METHODS HCC827 and H1975, EGFR mutant non-small cell lung carcinoma (NSCLC) cell lines, were transfected with wildtype CRIPTO, two secreted variants of CRIPTO, a membrane only version of CRIPTO, and the mock backbone vector as the control. Western blotting, immunoprecipitation, and in vitro viability experiments were performed. In vivo work was carried out in athymic nude mice; 2 × 106 CRIPTO overexpressing HCC827 cells were implanted per mouse. EGFR mutant NSCLC patient blood samples were collected before treatment with and EGFR-TKI, during response while on treatment, and at progression while on treatment. RESULTS Although both membrane bound and secreted CRIPTO forms were able to activate downstream pathways such as SRC, CRIPTO was unable to elicit resistance towards osimertinib in vitro or in vivo. CRIPTO serum levels in mice were higher in larger xenograft tumors. Furthermore, CRIPTO serum levels were higher in patients with progressing lung cancer when compared to their CRIPTO serum levels during EGFR-TKI response. CONCLUSIONS CRIPTO does not cause resistance against third generation EGFR-TKI osimertinib. CRIPTO levels in serum might be a potentially useful biomarker for tumor burden in NSCLC patients.
Collapse
Affiliation(s)
- Vincent Chen
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States
| | - Eiji Iwama
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States
| | - In-Kyu Kim
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States
| | - Giuseppe Giaccone
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, United States.
| |
Collapse
|