1
|
Liu X, Xi R, Cheng L, Wang Y, Nie Y, Yan G, Guo D, Guo W, Du T, Lu H, Wang P, Zhu J, Li F. Effectiveness and mechanism of the Chinese medicine Weiren Xiaoyou formula in improving palmoplantar warts. Heliyon 2024; 10:e31376. [PMID: 38818172 PMCID: PMC11137545 DOI: 10.1016/j.heliyon.2024.e31376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Background Palmoplantar warts (PWs) are a usual skin disease associated with human papillomavirus (HPV) that can affect patients' quality of life. The traditional Chinese medicine (TCM) Weiren Xiaoyou formula (WRXYF) is a relatively gentle and effective therapy that has achieved good therapeutic effects in clinical practice, but its mechanism has not yet been studied. Methods A meta-analysis was carried out to identify the potential advantages of topical TCM for PW treatment. Clinical cases suggested that WRXYF was an effective therapeutic agent against PWs. Network pharmacology was utilized to predict potential targets for the main bioactive compound, tanshinone IIA (Tan IIA), in WRXYF. High-performance liquid chromatography with electrospray mass spectrometry (HPLC/ESI-MS) was applied to detect major components. The bioactivity of Tan IIA against PWs was then validated with quantitative polymerase chain reaction (q-PCR), fluorescence in situ hybridization (FISH), electron microscopy and Western blotting. Results A meta-analysis was conducted on 10 randomized clinical trials (RCTs) involving 2260 participants suggested that topical TCM could more effectively treat PWs than conventional medications. Network pharmacology identified Tan IIA as a candidate agent from 17 major compounds assessed by HPLC/ESI-MS because of its stable binding with 10 PW targets. HPV2, HPV27, and HPV57 were the main infectious strains in tissues obtained from PW patients and in HPV-infected HaCaT cells. Tan IIA treatment effectively destroyed viral particles and reduced the viral copy numbers of the three HPV subtypes. The results shown that Tan IIA has the ability to halt the cell cycle of HPV-infected HaCaT cells specifically in the G0/G1 phase. A total of 6 cell cycle-related proteins were regulated after Tan IIA treatment, demonstrating the role of Tan IIA in inhibiting the cell cycle. Conclusion Tan IIA, the primary bioactive constituent in WRXYF, enhances PWs by halting the cell cycle in the G0/G1 phase via modulation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ruofan Xi
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yiwen Nie
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ting Du
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hanzhi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Peiyao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
2
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Xu A, Wang Q, Lv X, Lin T. Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology. Front Oncol 2021; 11:638146. [PMID: 33816280 PMCID: PMC8010190 DOI: 10.3389/fonc.2021.638146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Although the existing therapies have made great progress and significantly improved the prognosis of patients, it is undeniable that these treatment measures still cause some serious side effects. In this context, a new treatment method is needed to address these shortcomings. In recent years, the magnetic fields have been proposed as a novel treatment method with the advantages of less side effects, high efficiency, wide applications, and low costs without forming scars. Previous studies reported that static magnetic fields (SMFs) and low-frequency magnetic fields (LF-MFs, frequency below 300 Hz) exert anti-tumor function, independent of thermal effects. Magnetic fields (MFs) could inhibit cell growth and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation; regulate the immune system; and suppress angiogenesis and metastasis via various signaling pathways. In addition, they are effective in combination therapies: MFs not only promote the absorption of chemotherapy drugs by producing small holes on the surface of cell membrane but also enhance the inhibitory effects by regulating apoptosis and cell cycle related proteins. At present, MFs can be used as drug delivery systems to target magnetic nanoparticles (MNPs) to tumors. This review aims to summarize and analyze the current knowledge of the pre-clinical studies of anti-tumor effects and their underlying mechanisms and discuss the prospects of the application of MF therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Aoshu Xu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Qian Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Xin Lv
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| | - Tingting Lin
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, China
- Key Laboratory of Geophysics Exploration Equipment, Ministry of Education of China, Changchun, China
| |
Collapse
|
4
|
Sharawi ZW. Therapeutic effect of Arthrocnemum machrostachyum methanolic extract on Ehrlich solid tumor in mice. BMC Complement Med Ther 2020; 20:153. [PMID: 32448237 PMCID: PMC7245743 DOI: 10.1186/s12906-020-02947-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background The anti-cancer effect of the halophyte Arthrocnemum indicum, a member of Arthrocnemum family of salt-tolerant plants, was evaluated against colorectal cancer cell, CaCo2. However, the anti-cancer effect of another halophyte Arthrocnemum machrostachyum was not investigated yet. Herein, the anticancer effect of A. machrostachyum methanolic extract (AME) was evaluated against Ehrlich solid tumor (EST) in mice and the potential mechanism of action was also studied. Methods Male Swiss albino mice (n = 28) were randomly divided into 4 groups (n = 7/group). Group 1 (negative control group); group 2 (EST) injected intramuscularly by 0.2 mL Ehrlich ascitic carcinoma (2 × 106 cells); and groups 3 and 4 injected intratumorally with AME (180 and 360 mg/kg body weight, respectively) at D12 trice weekly for 2 weeks. Gene expression, protein expression, DNA damage, and TNFa level in tumors were determined by real-time PCR, western blot, comet assay, and Elisa, respectively. Results Treatment with AME induced anti-tumor effects against EST as indicated by 1) notable reduction in tumor size; 2) elevation in tissue necrosis and apoptosis, as confirmed histologically; 3) increased DNA fragmentation; 4) decreased expression of the apoptotic genes (p53, Bax and caspase 3), and increased expression of the anti-apoptotic marker Bcl2; 5) significantly upregulated cell cycle regulatory genes Cdc2 and connexin26, and; 6) decreased TNFa levels in tumor tissues. Interestingly, a high dose of AME exhibited a more potent anti-tumor effect against EST. Conclusion These findings indicate that AME has a potent antitumor effect against EST and could be used as an adjuvant to anticancer drugs to combat tumor, but after application of further confirmatory clinical trials.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, P.O Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|