1
|
Ramezani F, Takhshid MA, Abuei H, Farhadi A, Mosleh-Shirazi MA, Ramezani P. Combined Effects of Annexin A5 Overexpression, 5-Fluorouracil Treatment, and Irradiation on Cell Viability of Caski Cervical Cancer Cell Line. Reprod Sci 2024; 31:2654-2666. [PMID: 38811453 DOI: 10.1007/s43032-024-01575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Cervical cancer is the fourth leading cause of cancer deaths in women globally. Combining gene therapy with chemo- and radiotherapy may improve cervical cancer treatment outcomes. This study evaluated the effects of Annexin A5(ANXA5) overexpression alongside 5-fluorouracil (5-FU) and irradiation on the viability of CaSki cervical squamous cell carcinoma (SCC) cells. pAdenoVator-CMV-ANXA5-IRES-GFP-plasmid and mock plasmid were transfected into CaSki cells using calcium-phosphate. Seventy-two hours post-transfection, GFP expression was quantified by fluorescence microscopy and flow cytometry to evaluate transfection efficiency. ANXA5 overexpression was confirmed via qPCR. Twenty-four hours post-transfection, cells received a single dose of 8 Gy and were treated with 1 and 2 µg/ml of 5-FU (IC50 = 2.783 µg/ml). Cell viability, apoptosis, cell cycle stage, and Bcl-2 and Bax gene expression were assessed via MTT, annexin V/7-AAD, PI staining, and qPCR assays, respectively. ANXA5 was overexpressed 31.5-fold compared to control (p < 0.0001). MTT assays showed ANXA5 overexpression dose-dependently reduced CaSki cell viability (p < 0.001). IC50 of 5-FU was reduced from 2.783 μg/mL to 1.794 μg/mL when combined with ANXA5 overexpression. Additive effects on cell death were observed for ANXA5 plus 5-FU or irradiation versus ANXA5 alone. Apoptosis assays indicated combinatorial treatment increased CaSki cell apoptosis over ANXA5 alone. Cell cycle analysis revealed ANXA5 arrested cell cycle at G1/S phases; the percentage of cells in the S phase further rose with combination treatment. Finally, combination therapy significantly decreased Bcl-2 expression and increased Bax versus control (p < 0.001). Altogether, ANXA5 overexpression alongside 5-FU and irradiation may improve cervical squamous cell carcinoma (SCC) treatment efficacy. Further, in vivo investigations are warranted to confirm these in vitro results.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Paramedical Sciences, Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Paramedical Sciences, Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Meshkinfam St, Shiraz, Iran
- Physics Unit, Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Namazi Teaching Hospital, Namazi Square, Shiraz, Iran
| | - Pouya Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Avsar Abdik E, Abdik H, Turan D, Sahin F, Berger MR, Kaleagasioglu F. Dual Akt and Bcl-2 inhibition induces cell-type specific modulation of apoptotic and autophagic signaling in castration resistant prostate cancer cell lines. Mol Biol Rep 2021; 48:7755-7765. [PMID: 34647221 DOI: 10.1007/s11033-021-06786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cancer cell survival depends on the cross-regulation between apoptosis and autophagy which share common signaling pathways including PI3K/Akt/mTOR and Bcl-2. The aim of this study was to elucidate the modulation patterns between apoptosis and autophagy following dual inhibition by Akt inhibitor erufosine and Bcl-2 inhibitor ABT-737 in castration-resistant prostate cancer (CRPC) cell lines, PC-3 (Bax+) and DU-145 (Bax-). METHODS AND RESULTS Cell cycle progression, apoptotic and autophagic signaling were examined by flow cytometry, multi-caspase assay, Hoechst staining, acridine orange staining of acidic vesicular organelles (AVOs), qRT-PCR and Western Blot. Dual inhibition increased G2/M arrest in PC-3 and DU-145, but not in the healthy prostate epithelium cells, PNT-1A. Only in PC-3, dual inhibition induced synergistic apoptotic and additive autophagic effects. In DU-145 and PNT-1A cells, ABT-737 did not display any remarkable effect on multicaspase activity and erufosine and ABT-737, neither alone nor in combination induced AVOs. By dual inhibition, AKT, BCL-2 and NF-κB gene expressions were downregulated in PC-3, both ATG-5 and BECLIN-1 gene expressions were upregulated in DU-145 but Beclin-1 protein expression was substantially reduced in both CRPC cells. Dual inhibition-induced synergistic multicaspase activation in PC-3 degrades and disrupts autophagic activity of Beclin-1, enhancing caspase-dependent apoptosis. However, in DU-145, following dual inhibition, rate of multicaspase induction and apoptosis are lower but autophagy is completely abolished despite markedly increased BECLIN-1 gene expression. CONCLUSION In conclusion, antineoplastic drug combinations may display cell-type specific modulation of apoptotic and autophagic signaling and lack of protective autophagy may not necessarily indicate increased chemotherapeutic sensitivity in heterogenous tumor subpopulations.
Collapse
Affiliation(s)
- Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Duygu Turan
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Koç University, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Ferda Kaleagasioglu
- Department of Pharmacology and Clinical Pharmacology, Istinye University Faculty of Medicine, Topkapı Campus, Maltepe Neighbourhood, Teyyareci Sami St., No. 3, Zeytinburnu, Istanbul, Turkey.
| |
Collapse
|
3
|
Dou Z, Zhao D, Chen X, Xu C, Jin X, Zhang X, Wang Y, Xie X, Li Q, Di C, Zhang H. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res 2021; 40:194. [PMID: 34118966 PMCID: PMC8196531 DOI: 10.1186/s13046-021-02001-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Dapeng Zhao
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caipeng Xu
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaodong Jin
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xuetian Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yupei Wang
- Medical Genetics Center of Gansu Maternal and Child Health Care Center, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Li
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
4
|
Shahverdi M, Amini R, Amri J, Karami H. Gene Therapy with MiRNA-Mediated Targeting of Mcl-1 Promotes the Sensitivity of Non-Small Cell Lung Cancer Cells to Treatment with ABT-737. Asian Pac J Cancer Prev 2020; 21:675-681. [PMID: 32212793 PMCID: PMC7437340 DOI: 10.31557/apjcp.2020.21.3.675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite the dramatic efficacy of ABT-737, a large percentage of cancer cells ultimately become resistance to this drug. Evidences show that over-expression of Mcl-1 is linked to ABT-737 resistance in NSCLC cells. The aim of this study was to investigate the effect of miRNA-101 on Mcl-1 expression and sensitivity of the A549 NSCLC cells to ABT-737. METHODS After miRNA-101 transfection, the Mcl-1 mRNA expression levels were quantified by RT-qPCR. Trypan blue staining was used to explore the effect of miRNA-101 on cell growth. The cytotoxic effects of miRNA-101 and ABT-737, alone and in combination, were measured using MTT assay. The effect of drugs combination was determined using the method of Chou-Talalay. Cell death was assessed using cell death detection ELISA assay kit. RESULTS Results showed that miRNA-101 markedly suppressed the expression of Mcl-1 mRNA in a time dependent manner, which led to A549 cell proliferation inhibition and enhancement of apoptosis (p < 0.05, relative to blank control). Pretreatment with miRNA-101 synergistically decreased the cell survival rate and lowered the IC50 value of ABT-737. Furthermore, miRNA-101 dramatically enhanced the apoptotic effect of ABT-737. Negative control miRNA had no remarkable effect on cellular parameters. CONCLUSIONS Our findings propose that suppression of Mcl-1 by miRNA-101 can effectively inhibit the cell growth and sensitize A549 cells to ABT-737. Therefore, miRNA-101 can be considered as a potential therapeutic target in patients with non-small cell lung cancer. .
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Molecular and Medicine Research Center,
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine,
| | - Razieh Amini
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine,
| | - Jamal Amri
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Hadi Karami
- Molecular and Medicine Research Center,
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine,
| |
Collapse
|
5
|
Hsin IL, Chou YH, Hung WL, Ko JL, Wang PH. The Application of Arsenic Trioxide in Ameliorating ABT-737 Target Therapy on Uterine Cervical Cancer Cells through Unique Pathways in Cell Death. Cancers (Basel) 2019; 12:cancers12010108. [PMID: 31906234 PMCID: PMC7016694 DOI: 10.3390/cancers12010108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022] Open
Abstract
ABT-737, a B cell lymphoma-2 (Bcl-2) family inhibitor, activates apoptosis in cancer cells. Arsenic trioxide is an apoptosis activator that impairs cancer cell survival. The aim of this study was to evaluate the effect of a combination treatment with ABT-737 and arsenic trioxide on uterine cervical cancer cells. MTT (3-(4,5-dimethylthiazol-2-yl)-25-diphenyltetrazolium bromide) assay revealed that ABT-737 and arsenic trioxide induced a synergistic effect on uterine cervical cancer cells. Arsenic trioxide enhanced ABT-737-induced apoptosis and caspase-7 activation and the ABT-737-mediated reduction of anti-apoptotic protein Mcl-1 in Caski cells. Western blot assay revealed that arsenic trioxide promoted the ABT-737-mediated reduction of CDK6 and thymidylate synthetase in Caski cells. Arsenic trioxide promoted ABT-737-inhibited mitochondrial membrane potential and ABT-737-inhibited ANT expression in Caski cells. However, ABT-737-elicited reactive oxygen species were not enhanced by arsenic trioxide. The combined treatment induced an anti-apoptosis autophagy in SiHa cells. This study is the first to demonstrate that a combination treatment with ABT-737 and arsenic trioxide induces a synergistic effect on uterine cervical cancer cells through apoptosis. Our findings provide new insights into uterine cervical cancer treatment.
Collapse
Affiliation(s)
- I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (Y.-H.C.); (W.-L.H.); (J.-L.K.)
| | - Ying-Hsiang Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (Y.-H.C.); (W.-L.H.); (J.-L.K.)
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wei-Li Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (Y.-H.C.); (W.-L.H.); (J.-L.K.)
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (Y.-H.C.); (W.-L.H.); (J.-L.K.)
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (Y.-H.C.); (W.-L.H.); (J.-L.K.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24739595 (ext. 21721); Fax: +886-4-24738493
| |
Collapse
|