1
|
Pergaris A, Danas E, Gajdzis P, Levidou G, Gajdzis M, Cassoux N, Gardrat S, Donizy P, Korkolopoulou P, Kavantzas N, Klijanienko J, Theocharis S. EPHA2, EPHA4, and EPHA6 Expression in Uveal Melanomas: Searching for the Culprits of Neoplasia. Diagnostics (Basel) 2022; 12:1025. [PMID: 35626181 PMCID: PMC9139903 DOI: 10.3390/diagnostics12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
Uveal melanomas (UMs) comprise the most common primary intraocular malignancies in adults, with the eye representing the second most common site for melanoma, following the skin. Prognosis remains poor, with approximately half of the cases presenting with metastatic disease at the time of diagnosis. Erythropoietin-producing human hepatocellular receptors (EPHs) comprise the largest known family of tyrosine receptors, in which, along with their ligands, ephrins, play an important role in a plethora of processes in human physiology, and are implicated in key steps of carcinogenesis. In the present study, EPHA2, EPHA4, and EPHA6 immunohistochemical expressions were investigated in UM tissues and further correlated to a multitude of clinicopathological parameters, including disease stage and patients’ overall survival (OS). High levels of EPHA2 expression were significantly associated with increased tumor vertical thickness (p = 0.03) and the presence of intrascleral involvement (p = 0.05), whereas high EPHA6 nuclear expression was associated with older age at diagnosis (p = 0.03) and absence of retinal detachment (p = 0.05). In a multivariate survival analysis, increased EPHA4 expression was associated with shortened OS along with the presence of metastasis (p < 0.001) and monosomy 3 (p = 0.02). In a separate model, the concurrent overexpression of at least two of the investigated EPHs (HR = 14.7, p = 0.03) also proved to be an independent poor prognostic factor. In conclusion, our results implicate these specific members of the EPHA group as potential biomarkers for disease prognosis as well as possible targets for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld. 10, Goudi, 11527 Athens, Greece; (A.P.); (E.D.); (G.L.); (P.K.); (N.K.)
| | - Eugene Danas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld. 10, Goudi, 11527 Athens, Greece; (A.P.); (E.D.); (G.L.); (P.K.); (N.K.)
| | - Pawel Gajdzis
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical
University, 50-556 Wroclaw, Poland; (P.G.); (P.D.)
| | - Georgia Levidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld. 10, Goudi, 11527 Athens, Greece; (A.P.); (E.D.); (G.L.); (P.K.); (N.K.)
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Nathalie Cassoux
- Department of Ophthalmology, Institut Curie, 75005 Paris, France;
| | - Sophie Gardrat
- Department of Biopathology, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical
University, 50-556 Wroclaw, Poland; (P.G.); (P.D.)
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld. 10, Goudi, 11527 Athens, Greece; (A.P.); (E.D.); (G.L.); (P.K.); (N.K.)
| | - Nikolaos Kavantzas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld. 10, Goudi, 11527 Athens, Greece; (A.P.); (E.D.); (G.L.); (P.K.); (N.K.)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld. 10, Goudi, 11527 Athens, Greece; (A.P.); (E.D.); (G.L.); (P.K.); (N.K.)
| |
Collapse
|
2
|
EphrinB2-EphB4 Signaling in Neurooncological Disease. Int J Mol Sci 2022; 23:ijms23031679. [PMID: 35163601 PMCID: PMC8836162 DOI: 10.3390/ijms23031679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
EphrinB2-EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2-EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Collapse
|
3
|
Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas. Neuroradiology 2021; 64:323-331. [PMID: 34368897 DOI: 10.1007/s00234-021-02780-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE EphA2 is a key factor underlying invasive propensity of gliomas, and is associated with poor prognosis of tumors. We aimed to develop a radiomics-based imaging index for predicting EphA2 expression in diffuse gliomas, and further estimating its value for grading of tumors. METHODS A total of 182 patients with diffuse gliomas were included. All subjects underwent pre-operative MRI and post-operative pathological diagnosis. EphA2 expression of tumors was scored on pathological sections with immunohistochemical staining using monoclonal EphA2 antibody. MRI radiomics features were extracted from three-dimensional contrast-enhanced T1-weighted imaging and diffusion kurtosis imaging. Predictive models were constructed using machine learning-based radiomics features selection and three classifiers for predicting EphA2 expression and tumor grade. Features of best EphA2 expression model were subsequently used to construct another model of tumor grading. For each model, 146 cases (80%) were randomly picked as training and the rest 36 (20%) were testing cohorts. EphA2 expression was further correlated to the radiomics features in both grade models using Spearman's correlation. RESULTS Logistic regression model presented highest performance for predicting EphA2 expression (AUC: 0.836/0.724 in training/validation set). Tumor gradings model guided by features from EphA2 expression model demonstrated comparable performance (AUC: 0.930/0.983) to that constructed directly using imaging radiomics features (AUC: 0.960/0.977). Two radiomics features which included in both LR-grade models showed strong correlation (P < 0.05) with EphA2 expression. CONCLUSION The expression of EphA2 in gliomas could be predicted by radiomics features extracted from diffusion kurtosis MRI, which could also be used to assist tumor grading.
Collapse
|
4
|
The Clinical Impact of the EPH/Ephrin System in Cancer: Unwinding the Thread. Int J Mol Sci 2021; 22:ijms22168412. [PMID: 34445116 PMCID: PMC8395090 DOI: 10.3390/ijms22168412] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptors (EPHs) compose the largest known subfamily of receptor tyrosine kinases (RTKs). They bind and interact with the EPH family receptor interacting proteins (ephrins). EPHs/ephrins are implicated in a variety of physiological processes, as well as in cancer pathogenesis. With neoplastic disease remaining a leading cause of death world-wide, the development of novel biomarkers aiding in the field of diagnosis, prognosis, and disease monitoring is of utmost importance. A multitude of studies have proven the association between the expression of members of the EPH/ephrin system and various clinicopathological parameters, including disease stage, tumor histologic grade, and patients' overall survival. Besides their utilization in timely disease detection and assessment of outcome, EPHs/ephrins could also represent possible novel therapeutic targets. The aim of the current review of the literature was to present the existing data regarding the association between EPH/ephrin system expression and the clinical characteristics of malignant tumors.
Collapse
|