1
|
Zhou J, Song W, Liu Y, Yuan X. An efficient computational framework for gastrointestinal disorder prediction using attention-based transfer learning. PeerJ Comput Sci 2024; 10:e2059. [PMID: 38855223 PMCID: PMC11157572 DOI: 10.7717/peerj-cs.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Diagnosing gastrointestinal (GI) disorders, which affect parts of the digestive system such as the stomach and intestines, can be difficult even for experienced gastroenterologists due to the variety of ways these conditions present. Early diagnosis is critical for successful treatment, but the review process is time-consuming and labor-intensive. Computer-aided diagnostic (CAD) methods provide a solution by automating diagnosis, saving time, reducing workload, and lowering the likelihood of missing critical signs. In recent years, machine learning and deep learning approaches have been used to develop many CAD systems to address this issue. However, existing systems need to be improved for better safety and reliability on larger datasets before they can be used in medical diagnostics. In our study, we developed an effective CAD system for classifying eight types of GI images by combining transfer learning with an attention mechanism. Our experimental results show that ConvNeXt is an effective pre-trained network for feature extraction, and ConvNeXt+Attention (our proposed method) is a robust CAD system that outperforms other cutting-edge approaches. Our proposed method had an area under the receiver operating characteristic curve of 0.9997 and an area under the precision-recall curve of 0.9973, indicating excellent performance. The conclusion regarding the effectiveness of the system was also supported by the values of other evaluation metrics.
Collapse
Affiliation(s)
- Jiajie Zhou
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Wei Song
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Yeliu Liu
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaoming Yuan
- Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, China
| |
Collapse
|
2
|
Doğan RS, Yılmaz B. Histopathology image classification: highlighting the gap between manual analysis and AI automation. Front Oncol 2024; 13:1325271. [PMID: 38298445 PMCID: PMC10827850 DOI: 10.3389/fonc.2023.1325271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
The field of histopathological image analysis has evolved significantly with the advent of digital pathology, leading to the development of automated models capable of classifying tissues and structures within diverse pathological images. Artificial intelligence algorithms, such as convolutional neural networks, have shown remarkable capabilities in pathology image analysis tasks, including tumor identification, metastasis detection, and patient prognosis assessment. However, traditional manual analysis methods have generally shown low accuracy in diagnosing colorectal cancer using histopathological images. This study investigates the use of AI in image classification and image analytics using histopathological images using the histogram of oriented gradients method. The study develops an AI-based architecture for image classification using histopathological images, aiming to achieve high performance with less complexity through specific parameters and layers. In this study, we investigate the complicated state of histopathological image classification, explicitly focusing on categorizing nine distinct tissue types. Our research used open-source multi-centered image datasets that included records of 100.000 non-overlapping images from 86 patients for training and 7180 non-overlapping images from 50 patients for testing. The study compares two distinct approaches, training artificial intelligence-based algorithms and manual machine learning models, to automate tissue classification. This research comprises two primary classification tasks: binary classification, distinguishing between normal and tumor tissues, and multi-classification, encompassing nine tissue types, including adipose, background, debris, stroma, lymphocytes, mucus, smooth muscle, normal colon mucosa, and tumor. Our findings show that artificial intelligence-based systems can achieve 0.91 and 0.97 accuracy in binary and multi-class classifications. In comparison, the histogram of directed gradient features and the Random Forest classifier achieved accuracy rates of 0.75 and 0.44 in binary and multi-class classifications, respectively. Our artificial intelligence-based methods are generalizable, allowing them to be integrated into histopathology diagnostics procedures and improve diagnostic accuracy and efficiency. The CNN model outperforms existing machine learning techniques, demonstrating its potential to improve the precision and effectiveness of histopathology image analysis. This research emphasizes the importance of maintaining data consistency and applying normalization methods during the data preparation stage for analysis. It particularly highlights the potential of artificial intelligence to assess histopathological images.
Collapse
Affiliation(s)
- Refika Sultan Doğan
- Department of Bioengineering, Abdullah Gül University, Kayseri, Türkiye
- Biomedical Instrumentation and Signal Analysis Laboratory, Abdullah Gül University, Kayseri, Türkiye
| | - Bülent Yılmaz
- Biomedical Instrumentation and Signal Analysis Laboratory, Abdullah Gül University, Kayseri, Türkiye
- Department of Electrical and Computer Engineering, Abdullah Gul University, Kayseri, Türkiye
- Department of Electrical Engineering, Gulf University for Science and Technology, Mishref, Kuwait
| |
Collapse
|
3
|
Chlorogiannis DD, Verras GI, Tzelepi V, Chlorogiannis A, Apostolos A, Kotis K, Anagnostopoulos CN, Antzoulas A, Davakis S, Vailas M, Schizas D, Mulita F. Tissue classification and diagnosis of colorectal cancer histopathology images using deep learning algorithms. Is the time ripe for clinical practice implementation? PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:353-367. [PMID: 38572457 PMCID: PMC10985751 DOI: 10.5114/pg.2023.130337] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/20/2023] [Indexed: 04/05/2024]
Abstract
Colorectal cancer is one of the most prevalent types of cancer, with histopathologic examination of biopsied tissue samples remaining the gold standard for diagnosis. During the past years, artificial intelligence (AI) has steadily found its way into the field of medicine and pathology, especially with the introduction of whole slide imaging (WSI). The main outcome of interest was the composite balanced accuracy (ACC) as well as the F1 score. The average reported ACC from the collected studies was 95.8 ±3.8%. Reported F1 scores reached as high as 0.975, with an average of 89.7 ±9.8%, indicating that existing deep learning algorithms can achieve in silico distinction between malignant and benign. Overall, the available state-of-the-art algorithms are non-inferior to pathologists for image analysis and classification tasks. However, due to their inherent uniqueness in their training and lack of widely accepted external validation datasets, their generalization potential is still limited.
Collapse
Affiliation(s)
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | | | - Anastasios Apostolos
- First Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Konstantinos Kotis
- Intelligent Systems Lab, Department of Cultural Technology and Communication, University of the Aegean, Mytilene, Greece
| | | | - Andreas Antzoulas
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Spyridon Davakis
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Michail Vailas
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Schizas
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| |
Collapse
|
4
|
Xiao Y, Wang S, Ling R, Song Y. Application of artificial neural network algorithm in pathological diagnosis and prognosis prediction of digestive tract malignant tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:243-248. [PMID: 37283110 DOI: 10.3724/zdxbyxb-2022-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The application of artificial neural network algorithm in pathological diagnosis of gastrointestinal malignant tumors has become a research hotspot. In the previous studies, the algorithm research mainly focused on the model development based on convolutional neural networks, while only a few studies used the combination of convolutional neural networks and recurrent neural networks. The research contents included classical histopathological diagnosis and molecular typing of malignant tumors, and the prediction of patient prognosis by utilizing artificial neural networks. This article reviews the research progress on artificial neural network algorithm in the pathological diagnosis and prognosis prediction of digestive tract malignant tumors.
Collapse
Affiliation(s)
- Ya Xiao
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Ren Ling
- Shanghai Laizi Software Technology Co. Ltd., Shanghai 201499, China
| | - Yufei Song
- Department of Gastroenterology, the Affiliated Lihuili Hospital, Ningbo University, Ningbo 315046, Zhejiang Province, China.
| |
Collapse
|
5
|
Mansur A, Saleem Z, Elhakim T, Daye D. Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions. Front Oncol 2023; 13:1065402. [PMID: 36761957 PMCID: PMC9905815 DOI: 10.3389/fonc.2023.1065402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Artificial Intelligence (AI) is a branch of computer science that utilizes optimization, probabilistic and statistical approaches to analyze and make predictions based on a vast amount of data. In recent years, AI has revolutionized the field of oncology and spearheaded novel approaches in the management of various cancers, including colorectal cancer (CRC). Notably, the applications of AI to diagnose, prognosticate, and predict response to therapy in CRC, is gaining traction and proving to be promising. There have also been several advancements in AI technologies to help predict metastases in CRC and in Computer-Aided Detection (CAD) Systems to improve miss rates for colorectal neoplasia. This article provides a comprehensive review of the role of AI in predicting risk, prognosis, and response to therapies among patients with CRC.
Collapse
Affiliation(s)
- Arian Mansur
- Harvard Medical School, Boston, MA, United States
| | | | - Tarig Elhakim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Yavuz A, Alpsoy A, Gedik EO, Celik MY, Bassorgun CI, Unal B, Elpek GO. Artificial intelligence applications in predicting the behavior of gastrointestinal cancers in pathology. Artif Intell Gastroenterol 2022; 3:142-162. [DOI: 10.35712/aig.v3.i5.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Recent research has provided a wealth of data supporting the application of artificial intelligence (AI)-based applications in routine pathology practice. Indeed, it is clear that these methods can significantly support an accurate and rapid diagnosis by eliminating errors, increasing reliability, and improving workflow. In addition, the effectiveness of AI in the pathological evaluation of prognostic parameters associated with behavior, course, and treatment in many types of tumors has also been noted. Regarding gastrointestinal system (GIS) cancers, the contribution of AI methods to pathological diagnosis has been investigated in many studies. On the other hand, studies focusing on AI applications in evaluating parameters to determine tumor behavior are relatively few. For this purpose, the potential of AI models has been studied over a broad spectrum, from tumor subtyping to the identification of new digital biomarkers. The capacity of AI to infer genetic alterations of cancer tissues from digital slides has been demonstrated. Although current data suggest the merit of AI-based approaches in assessing tumor behavior in GIS cancers, a wide range of challenges still need to be solved, from laboratory infrastructure to improving the robustness of algorithms, before incorporating AI applications into real-life GIS pathology practice. This review aims to present data from AI applications in evaluating pathological parameters related to the behavior of GIS cancer with an overview of the opportunities and challenges encountered in implementing AI in pathology.
Collapse
Affiliation(s)
- Aysen Yavuz
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Anil Alpsoy
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Elif Ocak Gedik
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | | | | | - Betul Unal
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
7
|
Tharwat M, Sakr NA, El-Sappagh S, Soliman H, Kwak KS, Elmogy M. Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques. SENSORS (BASEL, SWITZERLAND) 2022; 22:9250. [PMID: 36501951 PMCID: PMC9739266 DOI: 10.3390/s22239250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The treatment and diagnosis of colon cancer are considered to be social and economic challenges due to the high mortality rates. Every year, around the world, almost half a million people contract cancer, including colon cancer. Determining the grade of colon cancer mainly depends on analyzing the gland's structure by tissue region, which has led to the existence of various tests for screening that can be utilized to investigate polyp images and colorectal cancer. This article presents a comprehensive survey on the diagnosis of colon cancer. This covers many aspects related to colon cancer, such as its symptoms and grades as well as the available imaging modalities (particularly, histopathology images used for analysis) in addition to common diagnosis systems. Furthermore, the most widely used datasets and performance evaluation metrics are discussed. We provide a comprehensive review of the current studies on colon cancer, classified into deep-learning (DL) and machine-learning (ML) techniques, and we identify their main strengths and limitations. These techniques provide extensive support for identifying the early stages of cancer that lead to early treatment of the disease and produce a lower mortality rate compared with the rate produced after symptoms develop. In addition, these methods can help to prevent colorectal cancer from progressing through the removal of pre-malignant polyps, which can be achieved using screening tests to make the disease easier to diagnose. Finally, the existing challenges and future research directions that open the way for future work in this field are presented.
Collapse
Affiliation(s)
- Mai Tharwat
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
| | - Nehal A. Sakr
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
| | - Shaker El-Sappagh
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13512, Egypt
- Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
| | - Hassan Soliman
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
| | - Kyung-Sup Kwak
- Department of Information and Communication Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Mohammed Elmogy
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Deep Neural Network Models for Colon Cancer Screening. Cancers (Basel) 2022; 14:cancers14153707. [PMID: 35954370 PMCID: PMC9367621 DOI: 10.3390/cancers14153707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Deep learning models have been shown to achieve high performance in diagnosing colon cancer compared to conventional image processing and hand-crafted machine learning methods. Hence, several studies have focused on developing hybrid learning, end-to-end, and transfer learning techniques to reduce manual interaction and for labelling the regions of interest. However, these weak learning techniques do not always provide a clear diagnosis. Therefore, it is necessary to develop a clear explainable learning method that can highlight factors and form the basis of clinical decisions. However, there has been little research carried out employing such transparent approaches. This study discussed the aforementioned models for colon cancer diagnosis. Abstract Early detection of colorectal cancer can significantly facilitate clinicians’ decision-making and reduce their workload. This can be achieved using automatic systems with endoscopic and histological images. Recently, the success of deep learning has motivated the development of image- and video-based polyp identification and segmentation. Currently, most diagnostic colonoscopy rooms utilize artificial intelligence methods that are considered to perform well in predicting invasive cancer. Convolutional neural network-based architectures, together with image patches and preprocesses are often widely used. Furthermore, learning transfer and end-to-end learning techniques have been adopted for detection and localization tasks, which improve accuracy and reduce user dependence with limited datasets. However, explainable deep networks that provide transparency, interpretability, reliability, and fairness in clinical diagnostics are preferred. In this review, we summarize the latest advances in such models, with or without transparency, for the prediction of colorectal cancer and also address the knowledge gap in the upcoming technology.
Collapse
|
9
|
HunCRC: annotated pathological slides to enhance deep learning applications in colorectal cancer screening. Sci Data 2022; 9:370. [PMID: 35764660 PMCID: PMC9240013 DOI: 10.1038/s41597-022-01450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Histopathology is the gold standard method for staging and grading human tumors and provides critical information for the oncoteam’s decision making. Highly-trained pathologists are needed for careful microscopic analysis of the slides produced from tissue taken from biopsy. This is a time-consuming process. A reliable decision support system would assist healthcare systems that often suffer from a shortage of pathologists. Recent advances in digital pathology allow for high-resolution digitalization of pathological slides. Digital slide scanners combined with modern computer vision models, such as convolutional neural networks, can help pathologists in their everyday work, resulting in shortened diagnosis times. In this study, 200 digital whole-slide images are published which were collected via hematoxylin-eosin stained colorectal biopsy. Alongside the whole-slide images, detailed region level annotations are also provided for ten relevant pathological classes. The 200 digital slides, after pre-processing, resulted in 101,389 patches. A single patch is a 512 × 512 pixel image, covering 248 × 248 μm2 tissue area. Versions at higher resolution are available as well. Hopefully, HunCRC, this widely accessible dataset will aid future colorectal cancer computer-aided diagnosis and research. Measurement(s) | H&E slide staining • ex vivo light microscopy with immunohistochemistry and digital image analysis • Image Annotation Statement • Screening Colonoscopy | Technology Type(s) | Hematoxylin and Eosin Staining Method • bright-field microscopy • Observation • Biopsy of Colon | Factor Type(s) | screening status of colon cancer or normal tissue | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | Central Hungary |
Collapse
|
10
|
Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12040837. [PMID: 35453885 PMCID: PMC9028395 DOI: 10.3390/diagnostics12040837] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men, with an increasing incidence. Pathology diagnosis complemented with prognostic and predictive biomarker information is the first step for personalized treatment. The increased diagnostic load in the pathology laboratory, combined with the reported intra- and inter-variability in the assessment of biomarkers, has prompted the quest for reliable machine-based methods to be incorporated into the routine practice. Recently, Artificial Intelligence (AI) has made significant progress in the medical field, showing potential for clinical applications. Herein, we aim to systematically review the current research on AI in CRC image analysis. In histopathology, algorithms based on Deep Learning (DL) have the potential to assist in diagnosis, predict clinically relevant molecular phenotypes and microsatellite instability, identify histological features related to prognosis and correlated to metastasis, and assess the specific components of the tumor microenvironment.
Collapse
|
11
|
Qiu H, Ding S, Liu J, Wang L, Wang X. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. Curr Oncol 2022; 29:1773-1795. [PMID: 35323346 PMCID: PMC8947571 DOI: 10.3390/curroncol29030146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Accurate early detection and diagnosis, comprehensive assessment of treatment response, and precise prediction of prognosis are essential to improve the patients’ survival rate. In recent years, due to the explosion of clinical and omics data, and groundbreaking research in machine learning, artificial intelligence (AI) has shown a great application potential in clinical field of CRC, providing new auxiliary approaches for clinicians to identify high-risk patients, select precise and personalized treatment plans, as well as to predict prognoses. This review comprehensively analyzes and summarizes the research progress and clinical application value of AI technologies in CRC screening, diagnosis, treatment, and prognosis, demonstrating the current status of the AI in the main clinical stages. The limitations, challenges, and future perspectives in the clinical implementation of AI are also discussed.
Collapse
Affiliation(s)
- Hang Qiu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Correspondence: (H.Q.); (X.W.)
| | - Shuhan Ding
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Jianbo Liu
- West China School of Medicine, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Xiaodong Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (H.Q.); (X.W.)
| |
Collapse
|
12
|
Advancements in Oncology with Artificial Intelligence—A Review Article. Cancers (Basel) 2022; 14:cancers14051349. [PMID: 35267657 PMCID: PMC8909088 DOI: 10.3390/cancers14051349] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the advancement of artificial intelligence, including machine learning, the field of oncology has seen promising results in cancer detection and classification, epigenetics, drug discovery, and prognostication. In this review, we describe what artificial intelligence is and its function, as well as comprehensively summarize its evolution and role in breast, colorectal, and central nervous system cancers. Understanding the origin and current accomplishments might be essential to improve the quality, accuracy, generalizability, cost-effectiveness, and reliability of artificial intelligence models that can be used in worldwide clinical practice. Students and researchers in the medical field will benefit from a deeper understanding of how to use integrative AI in oncology for innovation and research. Abstract Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mammography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based tumor imaging analysis is independent of the experience level of evaluating physicians, and the results are expected to be more standardized and accurate. One of the biggest challenges is its generalizability worldwide. The current detection and screening methods for colon polyps and breast cancer have a vast amount of data, so they are ideal areas for studying the global standardization of artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on current management standards. ML offers the prospect of unraveling undiscovered features from routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring, and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types, standard management methods may be improved by augmenting personalized/precision medicine. This review aims to provide clinicians and medical researchers with a basic understanding of how ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are crucial in advancing the use of AI in oncology.
Collapse
|
13
|
Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5269913. [PMID: 36704098 PMCID: PMC9873459 DOI: 10.1155/2022/5269913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
Colon cancer is a momentous reason for illness and death in people. The conclusive diagnosis of colon cancer is made through histological examination. Convolutional neural networks are being used to analyze colon cancer via digital image processing with the introduction of whole-slide imaging. Accurate categorization of colon cancers is necessary for capable analysis. Our objective is to promote a system for detecting and classifying colon adenocarcinomas by applying a deep convolutional neural network (DCNN) model with some preprocessing techniques on digital histopathology images. It is a leading cause of cancer-related death, despite the fact that both traditional and modern methods are capable of comparing images that may encompass cancer regions of various sorts after looking at a significant number of colon cancer images. The fundamental problem for colon histopathologists is differentiating benign from malignant illnesses to having some complicated factors. A cancer diagnosis can be automated through artificial intelligence (AI), enabling us to appraise more patients in less time and at a decreased cost. Modern deep learning (MDL) and digital image processing (DIP) approaches are used to accomplish this. The results indicate that the proposed structure can accurately analyze cancer tissues to a maximum of 99.80%. By implementing this approach, medical practitioners will establish an automated and reliable system for detecting various forms of colon cancer. Moreover, CAD systems will be built in the near future to extract numerous aspects from colonoscopic images for use as a preprocessing module for colon cancer diagnosis.
Collapse
|
14
|
Alpsoy A, Yavuz A, Elpek GO. Artificial intelligence in pathological evaluation of gastrointestinal cancers. Artif Intell Gastroenterol 2021; 2:141-156. [DOI: 10.35712/aig.v2.i6.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of artificial intelligence (AI) has shown promising benefits in many fields of diagnostic histopathology, including for gastrointestinal cancers (GCs), such as tumor identification, classification, and prognosis prediction. In parallel, recent evidence suggests that AI may help reduce the workload in gastrointestinal pathology by automatically detecting tumor tissues and evaluating prognostic parameters. In addition, AI seems to be an attractive tool for biomarker/genetic alteration prediction in GC, as it can contain a massive amount of information from visual data that is complex and partially understandable by pathologists. From this point of view, it is suggested that advances in AI could lead to revolutionary changes in many fields of pathology. Unfortunately, these findings do not exclude the possibility that there are still many hurdles to overcome before AI applications can be safely and effectively applied in actual pathology practice. These include a broad spectrum of challenges from needs identification to cost-effectiveness. Therefore, unlike other disciplines of medicine, no histopathology-based AI application, including in GC, has ever been approved either by a regulatory authority or approved for public reimbursement. The purpose of this review is to present data related to the applications of AI in pathology practice in GC and present the challenges that need to be overcome for their implementation.
Collapse
Affiliation(s)
- Anil Alpsoy
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Aysen Yavuz
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
15
|
Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. Artif Intell Gastrointest Endosc 2021; 2:185-197. [DOI: 10.37126/aige.v2.i4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Early gastrointestinal (GI) cancer has been the core of clinical endoscopic work. Its early detection and treatment are tightly associated with patients’ prognoses. As a novel technology, artificial intelligence has been improved and applied in the field of endoscopy. Studies on detection, diagnosis, risk, and prognosis evaluation of diseases in the GI tract have been in development, including precancerous lesions, adenoma, early GI cancers, and advanced GI cancers. In this review, research on esophagus, stomach, and colon was concluded, and associated with the process from precancerous lesions to early GI cancer, such as from Barrett’s esophagus to early esophageal cancer, from dysplasia to early gastric cancer, and from adenoma to early colonic cancer. A status quo of research on early GI cancers and artificial intelligence was provided.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
16
|
Oliveira SP, Neto PC, Fraga J, Montezuma D, Monteiro A, Monteiro J, Ribeiro L, Gonçalves S, Pinto IM, Cardoso JS. CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance. Sci Rep 2021; 11:14358. [PMID: 34257363 PMCID: PMC8277780 DOI: 10.1038/s41598-021-93746-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Most oncological cases can be detected by imaging techniques, but diagnosis is based on pathological assessment of tissue samples. In recent years, the pathology field has evolved to a digital era where tissue samples are digitised and evaluated on screen. As a result, digital pathology opened up many research opportunities, allowing the development of more advanced image processing techniques, as well as artificial intelligence (AI) methodologies. Nevertheless, despite colorectal cancer (CRC) being the second deadliest cancer type worldwide, with increasing incidence rates, the application of AI for CRC diagnosis, particularly on whole-slide images (WSI), is still a young field. In this review, we analyse some relevant works published on this particular task and highlight the limitations that hinder the application of these works in clinical practice. We also empirically investigate the feasibility of using weakly annotated datasets to support the development of computer-aided diagnosis systems for CRC from WSI. Our study underscores the need for large datasets in this field and the use of an appropriate learning methodology to gain the most benefit from partially annotated datasets. The CRC WSI dataset used in this study, containing 1,133 colorectal biopsy and polypectomy samples, is available upon reasonable request.
Collapse
Affiliation(s)
- Sara P Oliveira
- INESCTEC, 4200-465, Porto, Portugal.
- Faculty of Engineering (FEUP), University of Porto, 4200-465, Porto, Portugal.
| | - Pedro C Neto
- INESCTEC, 4200-465, Porto, Portugal
- Faculty of Engineering (FEUP), University of Porto, 4200-465, Porto, Portugal
| | - João Fraga
- IMP Diagnostics, 4150-146, Porto, Portugal
| | - Diana Montezuma
- IMP Diagnostics, 4150-146, Porto, Portugal
- ICBAS, University of Porto, 4050-313, Porto , Portugal
- Cancer Biology and Epigenetics Group, IPO-Porto, 4200-072, Porto, Portugal
| | | | | | | | | | | | - Jaime S Cardoso
- INESCTEC, 4200-465, Porto, Portugal
- Faculty of Engineering (FEUP), University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
17
|
Cao B, Zhang KC, Wei B, Chen L. Status quo and future prospects of artificial neural network from the perspective of gastroenterologists. World J Gastroenterol 2021; 27:2681-2709. [PMID: 34135549 PMCID: PMC8173384 DOI: 10.3748/wjg.v27.i21.2681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial neural networks (ANNs) are one of the primary types of artificial intelligence and have been rapidly developed and used in many fields. In recent years, there has been a sharp increase in research concerning ANNs in gastrointestinal (GI) diseases. This state-of-the-art technique exhibits excellent performance in diagnosis, prognostic prediction, and treatment. Competitions between ANNs and GI experts suggest that efficiency and accuracy might be compatible in virtue of technique advancements. However, the shortcomings of ANNs are not negligible and may induce alterations in many aspects of medical practice. In this review, we introduce basic knowledge about ANNs and summarize the current achievements of ANNs in GI diseases from the perspective of gastroenterologists. Existing limitations and future directions are also proposed to optimize ANN’s clinical potential. In consideration of barriers to interdisciplinary knowledge, sophisticated concepts are discussed using plain words and metaphors to make this review more easily understood by medical practitioners and the general public.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke-Cheng Zhang
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
18
|
Yoshida H, Kiyuna T. Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology. World J Gastroenterol 2021; 27:2818-2833. [PMID: 34135556 PMCID: PMC8173389 DOI: 10.3748/wjg.v27.i21.2818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Tremendous advances in artificial intelligence (AI) in medical image analysis have been achieved in recent years. The integration of AI is expected to cause a revolution in various areas of medicine, including gastrointestinal (GI) pathology. Currently, deep learning algorithms have shown promising benefits in areas of diagnostic histopathology, such as tumor identification, classification, prognosis prediction, and biomarker/genetic alteration prediction. While AI cannot substitute pathologists, carefully constructed AI applications may increase workforce productivity and diagnostic accuracy in pathology practice. Regardless of these promising advances, unlike the areas of radiology or cardiology imaging, no histopathology-based AI application has been approved by a regulatory authority or for public reimbursement. Thus, implying that there are still some obstacles to be overcome before AI applications can be safely and effectively implemented in real-life pathology practice. The challenges have been identified at different stages of the development process, such as needs identification, data curation, model development, validation, regulation, modification of daily workflow, and cost-effectiveness balance. The aim of this review is to present challenges in the process of AI development, validation, and regulation that should be overcome for its implementation in real-life GI pathology practice.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tomoharu Kiyuna
- Digital Healthcare Business Development Office, NEC Corporation, Tokyo 108-8556, Japan
| |
Collapse
|
19
|
Kobayashi S, Saltz JH, Yang VW. State of machine and deep learning in histopathological applications in digestive diseases. World J Gastroenterol 2021; 27:2545-2575. [PMID: 34092975 PMCID: PMC8160628 DOI: 10.3748/wjg.v27.i20.2545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Machine learning (ML)- and deep learning (DL)-based imaging modalities have exhibited the capacity to handle extremely high dimensional data for a number of computer vision tasks. While these approaches have been applied to numerous data types, this capacity can be especially leveraged by application on histopathological images, which capture cellular and structural features with their high-resolution, microscopic perspectives. Already, these methodologies have demonstrated promising performance in a variety of applications like disease classification, cancer grading, structure and cellular localizations, and prognostic predictions. A wide range of pathologies requiring histopathological evaluation exist in gastroenterology and hepatology, indicating these as disciplines highly targetable for integration of these technologies. Gastroenterologists have also already been primed to consider the impact of these algorithms, as development of real-time endoscopic video analysis software has been an active and popular field of research. This heightened clinical awareness will likely be important for future integration of these methods and to drive interdisciplinary collaborations on emerging studies. To provide an overview on the application of these methodologies for gastrointestinal and hepatological histopathological slides, this review will discuss general ML and DL concepts, introduce recent and emerging literature using these methods, and cover challenges moving forward to further advance the field.
Collapse
Affiliation(s)
- Soma Kobayashi
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Joel H Saltz
- Department of Biomedical Informatics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook , NY 11794, United States
| |
Collapse
|
20
|
Automated Classification and Segmentation in Colorectal Images Based on Self-Paced Transfer Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6683931. [PMID: 33542924 PMCID: PMC7843175 DOI: 10.1155/2021/6683931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Colorectal imaging improves on diagnosis of colorectal diseases by providing colorectal images. Manual diagnosis of colorectal disease is labor-intensive and time-consuming. In this paper, we present a method for automatic colorectal disease classification and segmentation. Because of label unbalanced and difficult colorectal data, the classification based on self-paced transfer VGG network (STVGG) is proposed. ImageNet pretraining network parameters are transferred to VGG network with training colorectal data to acquire good initial network performance. And self-paced learning is used to optimize the network so that the classification performance of label unbalanced and difficult samples is improved. In order to assist the colonoscopist to accurately determine whether the polyp needs surgical resection, feature of trained STVGG model is shared to Unet segmentation network as the encoder part and to avoid repeat learning of polyp segmentation model. The experimental results on 3061 colorectal images illustrated that the proposed method obtained higher classification accuracy (96%) and segmentation performance compared with a few other methods. The polyp can be segmented accurately from around tissues by the proposed method. The segmentation results underpin the potential of deep learning methods for assisting colonoscopist in identifying polyps and enabling timely resection of these polyps at an early stage.
Collapse
|
21
|
Wang KW, Dong M. Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects. World J Gastroenterol 2020; 26:5090-5100. [PMID: 32982111 PMCID: PMC7495038 DOI: 10.3748/wjg.v26.i34.5090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Since the advent of artificial intelligence (AI) technology, it has been constantly studied and has achieved rapid development. The AI assistant system is expected to improve the quality of automatic polyp detection and classification. It could also help prevent endoscopists from missing polyps and make an accurate optical diagnosis. These functions provided by AI could result in a higher adenoma detection rate and decrease the cost of polypectomy for hyperplastic polyps. In addition, AI has good performance in the staging, diagnosis, and segmentation of colorectal cancer. This article provides an overview of recent research focusing on the application of AI in colorectal polyps and cancer and highlights the advances achieved.
Collapse
Affiliation(s)
- Ke-Wei Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
22
|
Thakur N, Yoon H, Chong Y. Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review. Cancers (Basel) 2020; 12:E1884. [PMID: 32668721 PMCID: PMC7408874 DOI: 10.3390/cancers12071884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers requiring early pathologic diagnosis using colonoscopy biopsy samples. Recently, artificial intelligence (AI) has made significant progress and shown promising results in the field of medicine despite several limitations. We performed a systematic review of AI use in CRC pathology image analysis to visualize the state-of-the-art. Studies published between January 2000 and January 2020 were searched in major online databases including MEDLINE (PubMed, Cochrane Library, and EMBASE). Query terms included "colorectal neoplasm," "histology," and "artificial intelligence." Of 9000 identified studies, only 30 studies consisting of 40 models were selected for review. The algorithm features of the models were gland segmentation (n = 25, 62%), tumor classification (n = 8, 20%), tumor microenvironment characterization (n = 4, 10%), and prognosis prediction (n = 3, 8%). Only 20 gland segmentation models met the criteria for quantitative analysis, and the model proposed by Ding et al. (2019) performed the best. Studies with other features were in the elementary stage, although most showed impressive results. Overall, the state-of-the-art is promising for CRC pathological analysis. However, datasets in most studies had relatively limited scale and quality for clinical application of this technique. Future studies with larger datasets and high-quality annotations are required for routine practice-level validation.
Collapse
Affiliation(s)
- Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Hongjun Yoon
- AI Lab, Deepnoid, #1305 E&C Venture Dream Tower 2, 55, Digital-ro 33-Gil, Guro-gu, Seoul 06216, Korea;
| | - Yosep Chong
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| |
Collapse
|