1
|
Chen M, Liu Z, Zheng K, Hu C, Peng P. The potential mechanism of HIF-1α and CD147 in the development of triple-negative breast cancer. Medicine (Baltimore) 2024; 103:e38434. [PMID: 38847725 PMCID: PMC11155533 DOI: 10.1097/md.0000000000038434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis, and the outcomes of common therapy were not favorable. METHODS The samples of 84 patients with TNBC and 40 patients with breast fibroadenoma were collected in the pathology department specimen library of our hospital. The prognosis of patients was obtained through outpatient follow-up information, telephone and WeChat contacts, and medical records. The mRNA expression was analyzed using bioinformation and quantitative real-time polymerase chain reaction (qPCR). The protein expression was determined by hematoxylin-eosin staining and immunohistochemical staining. The results of survival analysis were visualized using Kaplan-Meier curves. RESULTS The immunohistochemical staining showed that hypoxia-inducible factor-1alpha (HIF-1α) was mainly distributed in the nucleus and cytoplasm, while CD147 is mainly distributed in cell membrane and cytoplasm. The qPCR results exhibited that the expression level of HIF-1α and CD147 in TNBC tissue was significantly higher than that in breast fibroadenoma tissue. The expression of HIF-1α was related to the histological grade and lymph node metastasis in TNBC, and the expression of CD147 was related to Ki-67, histological grade and lymph node metastasis. There was a positive relationship between the expression of CD147 and HIF-1α. The upregulated expression of CD147 was closely related to the poor prognosis of OS in TNBC. CONCLUSION CD147 could be a biomarker for the prognosis of TNBC and closely related to the expression of HIF-1α.
Collapse
Affiliation(s)
- Menghe Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Zitao Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Kai Zheng
- School of Medicine, Wuhan University of Science and Technology, Wuhan, People’s Republic of China
| | - Chaohua Hu
- Department of Breast and Thyroid Surgery, Xiaogan Central Hospital and Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, People’s Republic of China
| | - Pai Peng
- Department of Breast and Thyroid Surgery, Xiaogan Central Hospital and Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, People’s Republic of China
| |
Collapse
|
2
|
Gao J, Li P. Targeting eIF5A2 reduces invasion and reverses chemoresistance in SCC-9 cells in vitro. Histol Histopathol 2024; 39:463-470. [PMID: 37334930 DOI: 10.14670/hh-18-637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIMS Eukaryotic translation initiation factor 5A2 (EIF5A2) has been reported to be involved in metastasis and chemotherapy resistance in many human cancers. However, the effect and mechanism of EIF5A2 in oral cancer cells are unknown. Here, we investigated the effects of targeting EIF5A2 on chemotherapy resistance in oral cancer cells in vitro. METHODS By using a lentiviral system, we investigated the effects of targeting EIF5A2 on the invasion, migration, growth, and chemosensitivity of SCC-9 cells to CDDP in vitro. Through the method of gene intervention, we explore the role of pro-apoptotic Bim and epithelial and mesenchymal marker E-cadherin protein in this process and the regulation of EIF5A2 on Bim and E-cadherin. RESULTS Targeting EIF5A2 reduces invasion and migration in SCC-9 cells partly through upregulation of E-cadherin expression; Targeting EIF5A2 promotes cell apoptosis and inhibits cell survival as well as increasing chemosensitivity in SCC-9 cells through upregulation of Bim expression. CONCLUSION EIF5A2 may be a novel potential therapeutic target for oral cancer by upregulation of Bim and E-cadherin.
Collapse
Affiliation(s)
- Jinbo Gao
- Department of Stomatology, Tianjin Third Central Hospital, Hedong District, Tianjin, PR China.
| | - Peng Li
- Department of Stomatology, Tianjin Third Central Hospital, Hedong District, Tianjin, PR China
| |
Collapse
|
3
|
Feng J, Wang L, Zhang K, Ni S, Li B, Liu J, Wang D. Identification and panoramic analysis of drug response-related genes in triple negative breast cancer using as an example NVP-BEZ235. Sci Rep 2023; 13:5984. [PMID: 37045929 PMCID: PMC10097725 DOI: 10.1038/s41598-023-32757-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Taking NVP-BEZ235 (BEZ235) as an example to screen drug response-related genes (DRRGs) and explore their potential value in triple-negative breast cancer (TNBC). Through high-throughput technique, multidimensional transcriptome expression data (mRNA, miRNA and lncRNA) of BEZ235-treated and -untreated MDA-MB-468 cell lines were obtained. Combined with transcriptome data of the MDA-MB-468 cells and TCGA-TNBC tissues, differential gene expression analysis and WGCNA were performed to identify DRRGs associated with tumor trait by simulating the drug response microenvironment (DRM) of BEZ235-treated patients. Based on DRRGs, we constructed a ceRNA network and verified the expression levels of three key molecules by RT-qPCR, which not only demonstrated the successful construction of a BEZ235-treated cell line model but also explained the antitumor mechanism of BEZ235. Four molecular subtypes related to the DRM with survival difference were proposed using cluster analysis, namely glycolysis subtype, proliferation depression subtype, immune-suppressed subtype, and immune-activated subtype. A novel prognostic signature consisting of four DRRGs was established by Lasso-Cox analysis, which exhibited outstanding performance in predicting overall survival compared with several excellent reported signatures. The high- and low-risk groups were characterized by enrichment of metabolism-related pathways and immune-related pathways, respectively. Of note, the low-risk group had a better response to immune checkpoint blockade. Besides, pRRophetic analysis found that patients in the low-risk group were more sensitive to methotrexate and cisplation, whereas more resistant to BEZ235, docetaxel and paclitaxel. In conclusion, the DRRGs exemplified by BEZ235 are potential biomarkers for TNBC molecular typing, prognosis prediction and targeted therapy. The novel DRRGs-guided strategy for predicting the subtype, survival and therapy efficacy, might be also applied to more cancers and drugs other than TNBC and BEZ235.
Collapse
Affiliation(s)
- Jia Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Luchang Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Sujiao Ni
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Baolin Li
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Lv H, Zhu Y, Xue J, Jia X, Chen J. Targeted Drug Delivery System Based on Copper Sulfide for Synergistic Near-Infrared Photothermal Therapy/Photodynamic Therapy/Chemotherapy of Triple Negative Breast Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15766-15775. [PMID: 36508193 DOI: 10.1021/acs.langmuir.2c02667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multi-modal synergistic therapy, especially the integration of near-infrared laser phototherapies and chemotherapy, is often sought after owing to its minimal invasiveness, low side effects, and improved anticancer therapeutic efficacy. Herein, CuS nanoparticles were first coated with zinc phthalocyanine derivant (Pc)-functionalized mesoporous silica (mSiO2-Pc) to achieve a drug delivery system (CuS@mSiO2-Pc) with photothermal/photodynamic therapy. Chemical drug DOX was subsequently loaded for chemotherapy, and hyaluronic acid (HA) was employed as a covering material with cancer targeting. The as-obtained CuS@mSiO2-Pc(DOX)@HA nanoparticles were nano-sized with good biocompatibility, effective DOX loading, and controllable DOX releasing. Expectedly, this multifunctional nanoplatform exhibits effective generation of reactive oxygen species and hyperthermia upon the near-infrared laser irradiation. Most importantly, the nanoparticles were targeted into 4T1 cells and showed significantly remarkable cytotoxicity under near-infrared laser irradiation, proving their synergistic therapeutic efficacy. Therefore, this targeted drug system based on CuS with synergistic photothermal therapy/photodynamic therapy/chemotherapy has great application prospects in clinical anticancer treatment for triple negative breast cancer.
Collapse
Affiliation(s)
- Huihui Lv
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116Fujian, P. R. China
| | - Yuchao Zhu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116Fujian, P. R. China
| | - Jinping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116Fujian, P. R. China
| | - Xiao Jia
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116Fujian, P. R. China
| | - Juanjuan Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116Fujian, P. R. China
| |
Collapse
|
5
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Metabotropic Glutamate Receptor 8 Is Regulated by miR-33a-5p and Functions as an Oncogene in Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8002087. [PMID: 34950209 PMCID: PMC8691986 DOI: 10.1155/2021/8002087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/24/2023]
Abstract
It has been reported that glutamate metabotropic receptor 8 (GRM8) is closely implicated in the progression of human neuroblastoma, lung cancer, and glioma, but its role in breast cancer remains unknown. Thus, the present study was performed to uncover it. Immunohistochemistry, real-time PCR (RT-PCR), and western blotting experiments were performed to test GRM8 expression levels in tissues and cells. Cell functions were assessed by Cell Count Kit 8 (CCK-8), flow cytometry, wound healing, transwell chambers, and in vivo xenotransplantation experiments. The relationship between miR-33a-5p and GRM8 was evaluated by luciferase gene reporter and western blotting assay. The results showed that GRM8 expression was increased in breast cancer tissues and cells, which was closely associated with lower overall survival rate. Ectopic expression of GRM8 significantly enhanced cell growth, migration, and invasion and tumorigenesis and repressed cell apoptosis. In addition, GRM8 was under the negative regulation of miR-33a-5p, which was downregulated in breast cancer tissues and served as a tumor suppressor. Moreover, overexpression of GRM8 abrogated the inhibitive role of miR-33a-5p played in breast cancer. Collectively, this study reveals that GRM8 functions as an oncogene in breast cancer and is regulated by miR-33a-5p.
Collapse
|
7
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
8
|
Torki Z, Ghavi D, Hashemi S, Rahmati Y, Rahmanpour D, Pornour M, Alivand MR. The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: an update. Cancer Chemother Pharmacol 2021; 88:771-793. [PMID: 34510251 DOI: 10.1007/s00280-021-04337-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is an effective chemotherapy agent against a wide variety of tumors. However, intrinsic or acquired resistance diminishes the sensitivity of cancer cells to DOX, which leads to a cancer relapse and treatment failure. Resolutions to this challenge includes identification of the molecular pathways underlying DOX sensitivity/resistance and the development of innovative techniques to boost DOX sensitivity. DOX is classified as a Topoisomerase II poison, which is cytotoxic to rapidly dividing tumor cells. Molecular mechanisms responsible for DOX resistance include effective DNA repair and resumption of cell proliferation, deregulated development of cancer stem cell and epithelial to mesenchymal transition, and modulation of programmed cell death. MicroRNAs (miRNAs) have been shown to potentiate the reversal of DOX resistance as they have gene-specific regulatory functions in DOX-responsive molecular pathways. Identifying the dysregulation patterns of miRNAs for specific tumors following treatment with DOX facilitates the development of novel combination therapies, such as nanoparticles harboring miRNA or miRNA inhibitors to eventually prevent DOX-induced chemoresistance. In this article, we summarize recent findings on the role of miRNAs underlying DOX sensitivity/resistance molecular pathways. Also, we provide latest strategies for utilizing deregulated miRNA patterns as biomarkers or miRNAs as tools to overcome chemoresistance and enhance patient's response to DOX treatment.
Collapse
Affiliation(s)
- Zahra Torki
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Hashemi
- Department of Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Lian Y, Jiang D, Sun J. Tumor suppressive role of miR-33a-5p in pancreatic ductal adenocarcinoma cells by directly targeting RAP2A. Cell Mol Biol Lett 2021; 26:24. [PMID: 34090323 PMCID: PMC8180020 DOI: 10.1186/s11658-021-00265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background The suppressive effects of miR-33a-5p have been reported in colorectal cancer and lung cancer. However, the functional role of miR-33a-5p in pancreatic ductal adenocarcinoma (PDAC) has not yet been elucidated. Methods The expression of miR-33a-5p was determined using reverse-transcription quantitative PCR (RT-qPCR) in PDAC tissues and cell lines. The association between miR-33a-5p expression and clinical categorical parameters was analyzed by the chi-square test. Cell proliferation was analyzing by Cell Counting Kit -8 (CCK-8) assay. Transwell assay was utilized to assess cell migration and invasion. The interactions between miR-33a-5p and RAP2A were verified by luciferase reporter assay, RT-qPCR, western blot analysis and RNA immunoprecipitation (RIP) assay. Results Here, we observed for the first time that miR-33a-5p expression level was significantly decreased in PDAC tissues and cell lines. There was a significant association between decreased miR-33a-5p expression and TNM stage or lymph node metastasis. Overexpression of miR-33a-5p significantly inhibited SW1990 and PANC-1 cell proliferation, migration and invasion. Knockdown of miR-33a-5p remarkedly promoted cell proliferation, migration and invasion in BxPC-3 and ASPC-1. Mechanistically, RAP2A was confirmed as the target of miR-33a-5p in PDAC cells. Moreover, RAP2A overexpression abolished miR-33a-5p-mediated suppressive effects on SW1990 and PANC-1 cells. Conclusions Taken together, these results suggest that miR-33a-5p exerted tumor suppressive effects on PDAC cells by targeting RAP2A, which might provide a new theoretical basis for the clinical treatment of PDAC.
Collapse
Affiliation(s)
- Yanfen Lian
- Department of Oncology, Weihai Central Hospital Affiliated to Medical College of Qingdao University, No.3, West Mishan East Road, Weihai, Shandong, China
| | - Dongxiao Jiang
- Department of Oncology, Weihai Central Hospital Affiliated to Medical College of Qingdao University, No.3, West Mishan East Road, Weihai, Shandong, China
| | - Jiangtao Sun
- Department of Oncology, Weihai Central Hospital Affiliated to Medical College of Qingdao University, No.3, West Mishan East Road, Weihai, Shandong, China.
| |
Collapse
|
10
|
microRNA-1298 inhibits the malignant behaviors of breast cancer cells via targeting ADAM9. Biosci Rep 2021; 40:226894. [PMID: 33146718 PMCID: PMC7729294 DOI: 10.1042/bsr20201215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the progression of human malignancy by targeting oncogenes or tumor suppressors, which are 12 promising targets for cancer treatment. Increasing evidence has suggested the aberrant expression and tumor-suppressive function of miR-1298 in cancers, however, the regulatory mechanism of miR-1298 in breast cancer (BC) remains unclear. Here, our findings showed that miR-1298 was down-regulated in BC tissues and cell lines. Lower level of miR-1298 was significantly correlated with the advanced progression of BC patients. Experimental study showed that overexpression of miR-1298 inhibited the proliferation, induced apoptosis and cell cycle arrest in BC cells. The in vivo xenograft mice model showed that highly expressed miR-1298 significantly reduced the tumor growth and metastasis. Further mechanism analysis revealed that miR-1298 bound the 3′-untranslated region (UTR) of a disintegrin and metalloproteinase 9 domain (ADAM9) and suppressed the expression of ADAM9 in BC cells. ADAM9 was overexpressed in BC tissues and inversely correlated with miR-1298. Down-regulation of ADAM9 induced apoptosis and cell cycle arrest of BC cells. Moreover, ectopic expression of ADAM9 by transiently transfecting with vector encoding the full coding sequence of ADAM9 attenuated the inhibitory effects of miR-1298 on the proliferation and cell cycle progression of BC cells. Collectively, our results illustrated that miR-1298 played a suppressive role in regulating the phenotype of BC cells through directly repressing ADAM9, suggesting the potential application of miR-1298 in the therapy of BC.
Collapse
|
11
|
Yao M, Wang S, Chen L, Wei B, Fu P. Research on correlations of miR-585 expression with progression and prognosis of triple-negative breast cancer. Clin Exp Med 2021; 22:201-207. [PMID: 33826023 DOI: 10.1007/s10238-021-00704-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer is a special type of breast cancer, characterized by younger onset age, shorter survival period, higher malignant degree, higher mortality, recurrence and metastasis. Triple-negative breast cancer is more harmful to women's life and health, compared with other types of breast cancer. This paper mainly studied the role of miR-585 in triple-negative breast cancer. Real-time quantitative PCR was used to detect the expression of miR-585 in triple-negative breast cancer cell lines and tissues. Kaplan-Meier curve and Cox proportional hazards model analysis were used to investigate the prognostic value of miR-585 in triple-negative breast cancer. CCK-8 and Transwell assays were used to detect cell proliferation, invasion and migration. miR-585 was significantly down-regulated in triple-negative breast cancer cells and tissues. The low expression of miR-585 has been shown to be significantly associated with poor prognosis in triple-negative breast cancer patients. Abnormally low expression of miR-585 can promote cell proliferation, migration and invasion. Overall, abnormally low expression of miR-585 is associated with prognosis and progression of triple-negative breast cancer. miR-585 may serve as a prognostic biomarker for patients with triple-negative breast cancer and it is expected to be a new method and strategy for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Minya Yao
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Luyan Chen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Bajin Wei
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China.
| |
Collapse
|
12
|
Liu P, Wang M, Tang W, Li G, Gong N. Circ_SATB2 Attenuates the Anti-Tumor Role of Celastrol in Non-Small-Cell Lung Carcinoma Through Targeting miR-33a-5p/E2F7 Axis. Onco Targets Ther 2020; 13:11899-11912. [PMID: 33239891 PMCID: PMC7680679 DOI: 10.2147/ott.s279434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Celastrol (Cela) was a natural compound that exerted anti-tumor activity in many cancer cells. Nevertheless, the molecular mechanism behind the anti-tumor role of Cela in non-small-cell lung carcinoma (NSCLC) remains to be clarified. Methods Flow cytometry was used to analyze cell cycle progression and apoptosis. Colony formation assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to analyze cell proliferation. Cell migration and invasion abilities were assessed by transwell assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was implemented for the detection of RNA levels. Western blot assay was used for the determination of protein levels. Dual-luciferase reporter assay was conducted to confirm the interaction between microRNA-33a-5p (miR-33a-5p) and circular RNA SATB homeobox 2 (circ_SATB2) or E2F transcription factor 7 (E2F7). Xenograft tumor assay was conducted to test the roles of Cela and circ_SATB2 in NSCLC progression in vivo. Results Cela hampered the malignant behaviors of NSCLC cells. Cela down-regulated circ_SATB2 level in NSCLC cells. Cela stimulation-induced suppressive influence in NSCLC progression was alleviated by circ_SATB2 accumulation. E2F7 interference overturned circ_SATB2-mediated effects in Cela-stimulated NSCLC cells. MiR-33a-5p was a target of circ_SATB2, and E2F7 was verified as a target of miR-33a-5p. Circ_SATB2 attenuated Cela-mediated effects through targeting miR-33a-5p in NSCLC cells. Cela-mediated suppressive effect on tumor growth was partly attenuated by the overexpression of circ_SATB2 in vivo. Conclusion Cela suppressed NSCLC development through regulating circ_SATB2/miR-33a-5p/E2F7 signaling cascade.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Miao Wang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Weihua Tang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| | - Nianjin Gong
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, People's Republic of China
| |
Collapse
|
13
|
Pattanayak B, Garrido-Cano I, Adam-Artigues A, Tormo E, Pineda B, Cabello P, Alonso E, Bermejo B, Hernando C, Martínez MT, Rovira A, Albanell J, Rojo F, Burgués O, Cejalvo JM, Lluch A, Eroles P. MicroRNA-33b Suppresses Epithelial-Mesenchymal Transition Repressing the MYC-EZH2 Pathway in HER2+ Breast Carcinoma. Front Oncol 2020; 10:1661. [PMID: 33014831 PMCID: PMC7511588 DOI: 10.3389/fonc.2020.01661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Downregulation of miR-33b has been documented in many types of cancers and is being involved in proliferation, migration, and epithelial–mesenchymal transition (EMT). Furthermore, the enhancer of zeste homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation and the cell proliferation processes. We aim to evaluate the implication of miR-33b in the EMT pathway in HER2+ breast cancer (BC) and to analyze the role of EZH2 in this process as well as the interaction between them. miR-33b is downregulated in HER2+ BC cells vs healthy controls, where EZH2 has an opposite expression in vitro and in patients’ samples. The upregulation of miR-33b suppressed proliferation, induced apoptosis, reduced invasion, migration and regulated EMT by an increase of E-cadherin and a decrease of ß-catenin and vimentin. The silencing of EZH2 mimicked the impact of miR-33b overexpression. Furthermore, the inhibition of miR-33b induces cell proliferation, invasion, migration, EMT, and EZH2 expression in non-tumorigenic cells. Importantly, the Kaplan–Meier analysis showed a significant association between high miR-33b expression and better overall survival. These results suggest miR-33b as a suppressive miRNA that could inhibit tumor metastasis and invasion in HER2+ BC partly by impeding EMT through the repression of the MYC–EZH2 loop.
Collapse
Affiliation(s)
| | | | | | - Eduardo Tormo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain
| | - Begoña Pineda
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain
| | - Paula Cabello
- Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - Elisa Alonso
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - María Teresa Martínez
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Rovira
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Rojo
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Octavio Burgués
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Lluch
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,COST action CA15204, Brussels, Belgium
| |
Collapse
|
14
|
Song Y, Zhang M, Lu MM, Qu LY, Xu SG, Li YZ, Wang MY, Zhu HF, Zhang ZY, He GY, Yuan ZQ, Li N. EPAS1 targeting by miR-152-3p in Paclitaxel-resistant Breast Cancer. J Cancer 2020; 11:5822-5830. [PMID: 32913475 PMCID: PMC7477434 DOI: 10.7150/jca.46898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Paclitaxel plays a pivotal role in the chemotherapy of breast cancer, but resistance to this drug is an important obstacle in the treatment. It is reported that microRNA-152-3p (miR-152-3p) is involved in tamoxifen resistance in breast cancer, but whether it is involved in paclitaxel resistance in breast cancer remains unknown. Materials and methods: We examined the expression of miR-152-3p in breast cancer tissues and cells by qRT-PCR. After transfecting paclitaxel-resistant MCF-7/TAX cells with miR-152-3p mimics, we analyzed the function of miR-152-3p in these cells by MTT assay and flow cytometry. We screened the target gene, endothelial PAS domain-containing protein 1 (EPAS1), using bioinformatics analysis and verified it with the dual luciferase reporter gene experiment. The relationship between EPAS1 and miR-152-3p and their roles in paclitaxel resistance of breast cancer were further investigated using RNA interference and transfection techniques. Results: The expression of miR-152-3p in normal breast tissues and cells was markedly higher than that in breast cancer. Overexpression of miR-152-3p decreased the survival rate and increased the apoptosis rate and sensitivity of MCF-7/TAX cells to paclitaxel. We confirmed that EPAS1 is the target of miR-152-3p and is negatively regulated by this miRNA. Moreover, transfection with EPAS1 siRNA enhanced the susceptibility and apoptosis rate of MCF-7/TAX cells to paclitaxel. Co-transfection of miR-152-3p mimics and EPAS1 increased paclitaxel sensitivity and apoptosis induced by the drug. Conclusion: miR-152-3p inhibits the survival of MCF-7/TAX cells and promotes their apoptosis by targeting the expression of EPAS1, thereby, enhancing the sensitivity of these breast cancer cells to paclitaxel.
Collapse
Affiliation(s)
- Ying Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mo Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Man Man Lu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Li Yuan Qu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Si Guang Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yong Zhen Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ming Yong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, Henan 453003, P.R. China
| | - Hui Fang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhe Ying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guo Yang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhi Qing Yuan
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
15
|
Gao C, Wei J, Tang T, Huang Z. Role of microRNA-33a in malignant cells. Oncol Lett 2020; 20:2537-2556. [PMID: 32782572 PMCID: PMC7399786 DOI: 10.3892/ol.2020.11835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023] Open
Abstract
Cancer causes most of the mortality and morbidity worldwide, with a significant increase in incidence during recent years. MicroRNAs (miRNAs/miRs) are non-coding small RNAs capable of regulating gene expression. They regulate crucial cellular processes, including proliferation, differentiation, metastasis and apoptosis. Therefore, abnormal miRNA expression is associated with multiple diseases, including cancer. There are two types of cancer-associated miRNAs, oncogenic and tumor suppressor miRNAs, depending on their roles and expression patterns in cancer. Accordingly, miRNAs are considered to be targets for cancer prevention and treatment. miR-33a controls cellular cholesterol uptake and synthesis, which are both closely associated with carcinogenesis. The present review thoroughly describes the roles of miR-33a in more than a dozen types of cancer and the underlying mechanisms. Accordingly, the present review may serve as a guide for researchers studying the involvement of miR-33a in diverse cancer settings.
Collapse
Affiliation(s)
- Chang Gao
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiaen Wei
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Tingting Tang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zunnan Huang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|