1
|
Structural and Functional Thymic Biomarkers Are Involved in the Pathogenesis of Thymic Epithelial Tumors: An Overview. IMMUNO 2022. [DOI: 10.3390/immuno2020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The normal human thymus originates from the third branchial cleft as two paired anlages that descend into the thorax and fuse on the midline of the anterior–superior mediastinum. Alongside the epithelial and lymphoid components, different types of lymphoid accessory cells, stromal mesenchymal and endothelial cells migrate to, or develop in, the thymus. After reaching maximum development during early postnatal life, the human thymus decreases in size and lymphocyte output drops with age. However, thymic immunological functions persist, although they deteriorate progressively. Several major techniques were fundamental to increasing the knowledge of thymic development and function during embryogenesis, postnatal and adult life; these include immunohistochemistry, immunofluorescence, flow cytometry, in vitro colony assays, transplantation in mice models, fetal organ cultures (FTOC), re-aggregated thymic organ cultures (RTOC), and whole-organ thymic scaffolds. The thymic morphological and functional characterization, first performed in the mouse, was then extended to humans. The purpose of this overview is to provide a report on selected structural and functional biomarkers of thymic epithelial cells (TEC) involved in thymus development and lymphoid cell maturation, and on the historical aspects of their characterization, with particular attention being paid to biomarkers also involved in Thymic Epithelial Tumor (TET) pathogenesis. Moreover, a short overview of targeted therapies in TET, based on currently available experimental and clinical data and on potential future advances will be proposed.
Collapse
|
2
|
Soejima S, Kondo K, Tsuboi M, Muguruma K, Tegshee B, Kawakami Y, Kajiura K, Kawakita N, Toba H, Yoshida M, Takizawa H, Tangoku A. GAD1 expression and its methylation as indicators of malignant behavior in thymic epithelial tumors. Oncol Lett 2021; 21:483. [PMID: 33968199 PMCID: PMC8100960 DOI: 10.3892/ol.2021.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Thymic epithelial tumors (TETs) comprise thymomas and thymic carcinoma (TC). TC has more aggressive features and a poorer prognosis than thymomas. Genetic and epigenetic alterations in thymomas and TC have been investigated in an attempt to identify novel target molecules for TC. In the present study, genome-wide screening was performed on aberrantly methylated CpG islands in thymomas and TC, and the glutamate decarboxylase 1 gene (GAD1) was identified as the 4th significantly hypermethylated CpG island in TC compared with thymomas. GAD1 catalyzes the production of γ-aminobutyric acid from L-glutamic acid. GAD1 expression is abundant in the brain but rare in other tissues, including the thymus. A total of 73 thymomas and 17 TC tissues were obtained from 90 patients who underwent surgery or biopsy at Tokushima University Hospital between 1990 and 2017. DNA methylation was examined by bisulfite pyrosequencing, and the mRNA and protein expression levels of GAD1 were analyzed using reverse transcription-quantitative PCR and immunohistochemistry, respectively. The DNA methylation levels of GAD1 were significantly higher in TC tissues than in the normal thymus and thymoma tissues, and GAD1 methylation exhibited high sensitivity and specificity for discriminating between TC and thymoma. The mRNA and protein expression levels of GAD1 were significantly higher in TC tissues than in thymomas. Patients with TET with high GAD1 DNA hypermethylation and high mRNA and protein expression levels had significantly shorter relapse-free survival rates than those with low levels. In conclusion, significantly more epigenetic alterations were observed in TC tissues compared with in thymomas, which may contribute to the clinical features and prognosis of patients.
Collapse
Affiliation(s)
- Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Bilguun Tegshee
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
3
|
Liu D, Zhang P, Zhao J, Yang L, Wang W. Identification of Molecular Characteristics and New Prognostic Targets for Thymoma by Multiomics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5587441. [PMID: 34104648 PMCID: PMC8159640 DOI: 10.1155/2021/5587441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Thymoma is a heterogeneous tumor originated from thymic epithelial cells. The molecular mechanism of thymoma remains unclear. METHODS The expression profile, methylation, and mutation data of thymoma were obtained from TCGA database. The coexpression network was constructed using the variance of gene expression through WGCNA. Enrichment analysis using clusterProfiler R package and overall survival (OS) analysis by Kaplan-Meier method were carried out for the intersection of differential expression genes (DEGs) screened by limma R package and important module genes. PPI network was constructed based on STRING database for genes with significant impact on survival. The impact of key genes on the prognosis of thymoma was evaluated by ROC curve and Cox regression model. Finally, the immune cell infiltration, methylation modification, and gene mutation were calculated. RESULTS We obtained eleven coexpression modules, and three of them were higher positively correlated with thymoma. DEGs in these three modules mainly involved in MAPK cascade and PPAR pathway. LIPE, MYH6, ACTG2, KLF4, SULT4A1, and TF were identified as key genes through the PPI network. AUC values of LIPE were the highest. Cox regression analysis showed that low expression of LIPE was a prognostic risk factor for thymoma. In addition, there was a high correlation between LIPE and T cells. Importantly, the expression of LIPE was modified by methylation. Among all the mutated genes, GTF2I had the highest mutation frequency. CONCLUSION These results suggested that the molecular mechanism of thymoma may be related to immune inflammation. LIPE may be the key genes affecting prognosis of thymoma. Our findings will help to elucidate the pathogenesis and therapeutic targets of thymoma.
Collapse
Affiliation(s)
- Dazhong Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lei Yang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|