1
|
Larrue R, Fellah S, Boukrout N, De Sousa C, Lemaire J, Leboeuf C, Goujon M, Perrais M, Mari B, Cauffiez C, Pottier N, Van der Hauwaert C. miR-92a-3p regulates cisplatin-induced cancer cell death. Cell Death Dis 2023; 14:603. [PMID: 37704611 PMCID: PMC10499794 DOI: 10.1038/s41419-023-06125-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Non-small cell lung cancer is characterized by a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Therefore, the identification of new molecular determinants underlying sensitivity of cancer cells to existing therapy is of particular importance to develop new effective combinatorial treatment strategy. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been established as master regulators of a variety of cellular processes that play a key role in tumor initiation, progression and metastasis. This, along with their widespread deregulation in many distinct cancers, has triggered enthusiasm for miRNAs as novel therapeutic targets for cancer management, in particular in patients with refractory cancers such as those harboring KRAS mutations. In this study, we performed a loss-of-function screening approach to identify miRNAs whose silencing promotes sensitivity of lung adenocarcinoma (LUAD) cells to cisplatin. Our results showed in particular that antisense oligonucleotides directed against miR-92a-3p, a member of the oncogenic miR-17 ~ 92 cluster, caused the greatest increase in the sensitivity of KRAS-mutated LUAD cells to cisplatin. In addition, we demonstrated that this miRNA finely regulates the apoptotic threshold and the proliferative capacity of various tumor cell lines with distinct genetic alterations. Collectively, these data suggest that targeting miR-92a-3p may serve as an effective strategy to overcome treatment resistance of solid tumors.
Collapse
Affiliation(s)
- Romain Larrue
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Sandy Fellah
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Nihad Boukrout
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Corentin De Sousa
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Julie Lemaire
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Carolane Leboeuf
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Marine Goujon
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Michael Perrais
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, FHU-OncoAge, IHU RespiERA, 06560, Valbonne, France
| | - Christelle Cauffiez
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Nicolas Pottier
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Cynthia Van der Hauwaert
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France.
| |
Collapse
|
2
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
3
|
Liu S, Chu L, Xie M, Ma L, An H, Zhang W, Deng J. miR-92a-3p Promoted EMT via Targeting LATS1 in Cervical Cancer Stem Cells. Front Cell Dev Biol 2021; 9:757747. [PMID: 34869346 PMCID: PMC8639224 DOI: 10.3389/fcell.2021.757747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 01/19/2023] Open
Abstract
miR-92a-3p (microRNA-92a-3p) has been reported to be dysregulated in several cancers, and as such, it is considered to be a cancer-related microRNA. However, the influence of miR-92a-3p on biological behaviors in cervical cancer (CC) still remains unclear. Quantitative real-time PCR was used to detect miR-92a-3p levels in CC stem cells. Here, Cell Counting Kit-8 (CCK8) assay, Transwell cell invasion assay and flow cytometry assay were used to characterize the effects that miR-92a-3p and large tumor suppressor l (LATS1) had on proliferation, invasion and cell cycle transition. The luciferase reporter gene assay was used to verify the targeting relationship between miR-92a-3p and LATS1. Western Blotting was used to investigate the related signaling pathways and proteins. Data from The Cancer Genome Atlas (TCGA) showed that miR-92a-3p was upregulated in CC tissues and closely associated with overall survival. miR-92a-3p promoted proliferation, invasion and cell cycle transition in CC stem cells. The luciferase reporter assay showed that miR-92a-3p bound to the 3′-untranslated region (3′-UTR) of the LATS1 promoter. LATS1 inhibited proliferation, invasion and cell cycle transition. Results measured by Western Blotting showed that LATS1 downregulated expressions of transcriptional co-activator with PDZ-binding motif (TAZ), vimentin and cyclin E, but upregulated the expression of E-cadherin. Re-expression of LATS1 partly reversed the effects of miR-92a-3p on proliferation, invasion and cell cycle transition, as well as on TAZ, E-cadherin, vimentin, and cyclin E. miR-92a-3p promoted the malignant behavior of CC stem cells by targeting LATS1, which regulated TAZ and E-cadherin.
Collapse
Affiliation(s)
- Shuangyue Liu
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Liping Chu
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Mingzhu Xie
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Lisha Ma
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Hongmei An
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Wen Zhang
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Jihong Deng
- Department of Gynecology, Kunming Maternity and Child Care Hospital, Kunming, China
| |
Collapse
|
4
|
Guan B, Li G, Wan B, Guo X, Huang D, Ma J, Gong P, Guo J, Bu Y. RNA-binding protein RBM38 inhibits colorectal cancer progression by partly and competitively binding to PTEN 3'UTR with miR-92a-3p. ENVIRONMENTAL TOXICOLOGY 2021; 36:2436-2447. [PMID: 34453780 DOI: 10.1002/tox.23356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
RNA-binding motif protein 38 (RBM38) belongs to the RNA recognition motif family of RNA-binding proteins (RBPs). RBM38 was previously identified to suppress tumorigenesis in colorectal cancer (CRC). RBM38 was also reported to bind to the 3'UTR of phosphatase and tensin homolog gene on chromosome 10 (PTEN), a tumor suppressor involved in many cellular processes, to stabilize PTEN transcripts. In the present study, we investigated the mechanisms underlying the regulation of RBM38 in CRC. Reverse transcription quantitative polymerase chain reaction and western blotting detected the expression of RBM38, PTEN, and miR-92a-3p. Colony formation, EdU, sphere formation, Transwell invasion, and in vivo assays examined the influence of RBM38 on CRC progression. Furthermore, RNA immunoprecipitation (RIP) assay determined the binding site of RBM38 on PTEN 3'UTR. The binding of miR-92a-3p or RBM38 on PTEN 3'UTR was assessed by luciferase reporter and RIP assays. We discovered that RBM38 was downregulated in CRC cells and tissues. RBM38 repressed CRC progression in vitro and in vivo. Furthermore, RBM38 upregulated and stabilized PTEN expression. Interestingly, the overexpression of PTEN reversely attenuated the promotion of RBM38 depletion on CRC progression. Additionally, RBM38 competed with miR-92a-3p in binding to PTEN 3'UTR. In conclusion, RBM38 inhibits CRC progression by competitively binding to PTEN 3'UTR with miR-92a-3p.
Collapse
Affiliation(s)
- Bugao Guan
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Guangrun Li
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Benhai Wan
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Xiang Guo
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Desong Huang
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Jun Ma
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Ping Gong
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Jinbao Guo
- General Surgery, Jinhu People's Hospital, Huaian, China
| | - Yanzhi Bu
- General Surgery, Lianshui County People's Hospital, Huaian, China
| |
Collapse
|
5
|
NOV/CCN3 Promotes Cell Migration and Invasion in Intrahepatic Cholangiocarcinoma via miR-92a-3p. Genes (Basel) 2021; 12:genes12111659. [PMID: 34828265 PMCID: PMC8621878 DOI: 10.3390/genes12111659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a common type of human cancer with a poor prognosis, and investigating the potential molecular mechanisms that can contribute to gene diagnosis and therapy. Herein, based on the recently concerned vertebrate-specific Cyr61/CTGF/NOV (CCN) gene family because of its important roles in diverse diseases, we obtained NOV/CCN3 to query for its potential roles in tumorigenesis via bioinformatics analysis. Experimental validations confirmed that both NOV mRNA and protein are up-regulated in two ICC cell lines, suggesting that it may promote cell migration and invasion by promoting EMT. To elucidate the detailed regulatory mechanism, miR-92a-3p is screened and identified as a negative regulatory small RNA targeting NOV, and further experimental validation demonstrates that miR-92a-3p contributes to NOV-mediated migration and invasion of ICC via the Notch signaling pathway. Our study reveals that NOV may be a potential target for diagnosing and treating ICC, which will provide experimental data and molecular theoretical foundation for cancer treatment, particularly for future precision medicine.
Collapse
|
6
|
Wang Y, Chen A, Zheng C, Zhao L. miR-92a promotes cervical cancer cell proliferation, invasion, and migration by directly targeting PIK3R1. J Clin Lab Anal 2021; 35:e23893. [PMID: 34216514 PMCID: PMC8373326 DOI: 10.1002/jcla.23893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To clarify the role of miR-92a in regulating the malignant progression of cervical cancer and its specific molecular mechanism. METHODS qRT-PCR was used to detect the differential expression of miR-92a in cervical cancer and adjacent tissues. The effects of overexpression of miR-92a on the proliferation, migration, and invasion of HeLa and SiHa cells were tested. Luciferase assays and rescue experiments were used to investigate the regulatory mechanism of miR-92a on its downstream gene PIK3R1 and their interaction in the progression of cervical cancer. RESULTS miR-92a was significantly up-regulated in cervical cancer tissues. Overexpression of miR-92a significantly increased the ability of cervical cancer cells to proliferate, migrate, and invade. PIK3R1 was identified as a downstream gene of miR-92a. In cervical cancer tissues, PIK3R1 was found to be down-regulated and negatively correlated with the level of miR-92a. Overexpression of PIK3R1 reversed the promotional effect of overexpressed miR-92a on the proliferation, migration, and invasion of cervical cancer. CONCLUSION miR-92a is up-regulated in cervical cancer tissues. miR-92a promotes the malignant development of cervical cancer by negatively regulating PIK3R1.
Collapse
Affiliation(s)
- Yijun Wang
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo, China
| | - Aner Chen
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo, China
| | - Chenyang Zheng
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo, China
| | - Lingjun Zhao
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
7
|
Sun S, Wang R, Yi S, Li S, Wang L, Wang J. Roles of the microRNA‑338‑3p/NOVA1 axis in retinoblastoma. Mol Med Rep 2021; 23:394. [PMID: 33760207 PMCID: PMC8008220 DOI: 10.3892/mmr.2021.12033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is an intraocular malignancy that mainly affects young children. Previous reports have demonstrated that mutations or the inactivation of the RB1 gene were the main cause of RB; however, disruption of the intracellular signaling pathways following deficiency of RB1 requires further investigation. Based on the Gene Expression Omnibus data and bioinformatics prediction, the present study aimed to investigate the microRNA (miR)-338-3p/neuro-oncological ventral antigen 1 (NOVA1) axis in RB. Subsequently, overexpression and knockdown of miR-338-3p and NOVA1, respectively, were performed to study the role of miR-338-3p/NOVA1 in the progression of the RB cells. The results demonstrated that overexpression of miR-338-3p significantly inhibited cell proliferation, migration and invasion, and promoted apoptosis of the RB cells. Moreover, knockdown of NOVA1 showed similar results. A dual-luciferase reporter assay and rescue experiments further confirmed the direct binding between miR-338-3p and NOVA1. Taken together, the results indicated that miR-338-3p acted as tumor suppressor by targeting the oncogene of NOVA1 in RB, which may serve as potential therapeutic targets in RB.
Collapse
Affiliation(s)
- Shoubin Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Runze Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sisi Yi
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Sijia Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianwen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
8
|
Zhai X, Wu Y, Zhang D, Li H, Chong T, Zhao J. MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis. J Bioenerg Biomembr 2021; 53:191-202. [PMID: 33686550 DOI: 10.1007/s10863-021-09888-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common renal malignancies in the urinary system. Numerous studies have demonstrated that miRNAs can regulate tumorigenesis and progression. This study aims to investigate the role and regulatory mechanism of miR-6838-5p in RCC. Our study confirmed that miR-6838-5p was upregulated in human RCC tissues (30/42, 77.43%, P < 0.01) and RCC cell lines (P < 0.05) compared to adjacent non-neoplastic tissues and normal renal epithelial cells. In vitro, overexpression of miR-6838-5p enhanced cell proliferation and invasion in human RCC cell lines (ACHN and 786-O), which were detected by CCK-8, Transwell and Colony formation assays (P < 0.05), and knockdown of miR-6838-5p suppressed cell proliferation and invasion (P < 0.05). Results of Bioinformatics analysis combined with Dual-luciferase reporter gene assay demonstrated that miR-6838-5p could bind to Cyclin D binding myb-like transcription factor 1 (DMTF1). In addition, RT-qPCR and Western blotting confirmed that DMTF1 was downregulated in RCC tissues and cell lines. Meanwhile, it was demonstrated that overexpression of miR-6838-5p inhibited DMTF1 level in ACHN cells. Next, we confirmed that DMTF1 overexpression reversed the inhibitory effects of overexpression of miR-6838-5p on phosphatase and tensin homolog (PTEN), tumor protein 53(p53), murine double minute 2 (MDM2) and alternative reading frame (ARF) protein levels in the ARF-p53 signaling pathway. In conclusion, our research showed that miR-6838-5p enhanced the proliferation and invasion of RCC cells by inhibiting the DMTF1/ARF-p53 axis.
Collapse
Affiliation(s)
- Xiaoqiang Zhai
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yan Wu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Dong Zhang
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Zhao
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
9
|
Chen N, Wang Z, Yang X, Geng D, Fu J, Zhang Y. Integrated analysis of competing endogenous RNA in esophageal carcinoma. J Gastrointest Oncol 2021; 12:11-27. [PMID: 33708421 DOI: 10.21037/jgo-20-615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The Competing endogenous RNA (CeRNA) network plays important roles in the development and progression of multiple human cancers. Increasing attention has been paid to CeRNA in esophageal carcinoma (ESCA). Methods We explored The Cancer Genome Atlas (TCGA) database and then analyzed the RNAs of 142 samples to obtain long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNAs) with different expression trends alongside the progress of ESCA. A series test of cluster (STC) analysis was carried out to identify a set of unique model expression tendencies. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to validate the function of key genes that were obtained from the STC analysis. Results Through our analysis, 272 lncRNAs, 87 miRNAs, and 692 mRNAs showed upward expression or downward expression trends, and these molecules were tightly involved in cell cycle, pathways in cancer, metabolic processes, and protein phosphorylation, among others. Ultimately, we constructed a CeRNA network containing a total of 71 lncRNAs, 56 miRNAs, and 125 mRNAs. The overall survival (OS) was analyzed using univariate Cox regression analysis to clarify the relationship between these key molecules from the CeRNA network and the prognosis of ESCA patients. Through survival analysis, we finally screened out two lncRNAs (DLEU2, RP11-890B15.3), three miRNAs (miR-26b-3p, miR-92a-3p, miR-324-5p), and one mRNA (SIK2) as crucial prognostic factors for ESCA. Conclusions The novel CeRNA network that we constructed will provide new novel prognostic biomarkers and therapeutic targets for patients with ESCA.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhi Wang
- Nursing Department, Xi'an Chest Hospital, Xi'an, China
| | - Xiaomei Yang
- Hospital 521 of China's Ordnance Industry Group, Xi'an, China
| | - Donghong Geng
- School of Continuing Education of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Jang JH, Lee TJ. The role of microRNAs in cell death pathways. Yeungnam Univ J Med 2021; 38:107-117. [PMID: 33435638 PMCID: PMC8016624 DOI: 10.12701/yujm.2020.00836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that negatively regulate target messenger RNAs. In multicellular eukaryotes, numerous miRNAs perform basic cellular functions, including cell proliferation, differentiation, and death. Abnormal expression of miRNAs weakens or modifies various apoptosis pathways, leading to the development of human cancer. Cell death occurs in an active manner that maintains tissue homeostasis and eliminates potentially harmful cells through regulated cell death processes, including apoptosis, autophagic cell death, and necroptosis. In this review, we discuss the involvement of miRNAs in regulating cell death pathways in cancers and the potential therapeutic functions of miRNAs in cancer treatment.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| | - Tae-Jin Lee
- Department of Anatomy, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
11
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|