1
|
Jiang T, Xu L, Qu X, Li R, Cheng Y, He H. Hsa_circ_0014606 Derived from Exosomes Promotes Gastric Carcinoma Tumorigenesis and Proliferation by Sponging miR-514b-3p to Upregulate HNRNPC. Dig Dis Sci 2024; 69:811-820. [PMID: 38217675 DOI: 10.1007/s10620-023-08254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Gastric cancer is a common malignant tumor, and due to its insidious onset and limited screening methods, most patients are diagnosed with advanced disease and have a poor prognosis. The circRNA in exosomes has an essential role in cancer diagnosis and treatment. However, the part of hsa_circ_0014606 within exosomes in gastric cancer progression is unclear. Firstly, we extracted exosomes from the serum of gastric cancer patients and healthy individuals by ultracentrifugation and analyzed the expression of hsa_circ_0014606 in both exosomes; then knocked down hsa_circ_0014606 in vivo and in vitro, respectively, to observe its effect on the physiological function of gastric cancer cells; finally, we used bioinformatics to screen hsa_circ_0014606 targeting miRNAs and mRNAs, and experiments were performed to verify the interrelationship between the three. The results showed that the level of hsa_circ_0014606 in the serum exosomes of gastric cancer patients was significantly higher than that of the healthy population. The knockdown of hsa_circ_0014606 slowed the proliferation of gastric cancer cells, significantly reduced migration and invasion ability, accelerated apoptosis, and reduced tumor size in mice. In addition, the expression of hsa_circ_0014606 was negatively correlated with the expression of miR-514b-3p and positively correlated with the expression of heterogeneous nuclear ribonucleoprotein C (HNRNPC). In conclusion, hsa_circ_0014606 exerted a pro-cancer effect indirectly through miR-514b-3p targeting gene HNRNPC, and this study provides a new potential target for treating gastric cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Lingling Xu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaona Qu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Rui Li
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ye Cheng
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongmei He
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
2
|
Meng X, Yang D, Zhang B, Zhao Y, Zheng Z, Zhang T. Regulatory mechanisms and clinical applications of tumor-driven exosomal circRNAs in cancers. Int J Med Sci 2023; 20:818-835. [PMID: 37213665 PMCID: PMC10198146 DOI: 10.7150/ijms.82419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/09/2023] [Indexed: 05/23/2023] Open
Abstract
Malignant tumors seriously affect people's survival and prognosis. Exosomes, as vesicle structures widely existing in human tissues and body fluids, are involved in cell-to-cell transmission. Tumor-derived exosomes were secreted from tumors and involved in the development of carcinogenesis. Circular RNA (circRNA), a novel member of endogenous noncoding RNAs, is widespread in human and play a vital role in many physiological or pathological processes. Tumor-driven exosomal circRNAs are often involved in tumorigenesis and development including the proliferation, invasion, migration and chemo-or-radiotherapy sensitivity of tumor cell by multiple regulatory mechanisms. In this review, we will elaborate the roles and functions of tumor-driven exosomal circRNAs in cancers which may be used as potential cancer biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Ward Z, Schmeier S, Pearson J, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Richards AM, Pilbrow AP. Identifying Candidate Circulating RNA Markers for Coronary Artery Disease by Deep RNA-Sequencing in Human Plasma. Cells 2022; 11:3191. [PMID: 36291058 PMCID: PMC9599983 DOI: 10.3390/cells11203191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2023] Open
Abstract
Advances in RNA sequencing (RNA-Seq) have facilitated transcriptomic analysis of plasma for the discovery of new diagnostic and prognostic markers for disease. We aimed to develop a short-read RNA-Seq protocol to detect mRNAs, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in plasma for the discovery of novel markers for coronary artery disease (CAD) and heart failure (HF). Circulating cell-free RNA from 59 patients with stable CAD (half of whom developed HF within 3 years) and 30 controls was sequenced to a median depth of 108 paired reads per sample. We identified fragments from 3986 messenger RNAs (mRNAs), 164 long non-coding RNAs (lncRNAs), 405 putative novel lncRNAs and 227 circular RNAs in plasma. Circulating levels of 160 mRNAs, 10 lncRNAs and 2 putative novel lncRNAs were altered in patients compared with controls (absolute fold change >1.2, p < 0.01 adjusted for multiple comparisons). The most differentially abundant transcripts were enriched in mRNAs encoded by the mitochondrial genome. We did not detect any differences in the plasma RNA profile between patients who developed HF compared with those who did not. In summary, we show that mRNAs, lncRNAs and circular RNAs can be reliably detected in plasma by deep RNA-Seq. Multiple coding and non-coding transcripts were altered in association with CAD, including several mitochondrial mRNAs, which may indicate underlying myocardial ischaemia and oxidative stress. If validated, circulating levels of these transcripts could potentially be used to help identify asymptomatic individuals with established CAD prior to an acute coronary event.
Collapse
Affiliation(s)
- Zoe Ward
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand
- Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Vicky A Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Chris M Frampton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Rob N Doughty
- Heart Health Research Group, University of Auckland, Auckland 1023, New Zealand
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
- Cardiovascular Research Institute, National University of Singapore, Singapore 119228, Singapore
| | - Anna P Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-κB activating protein. Anticancer Drugs 2022; 33:1114-1125. [PMID: 36206097 DOI: 10.1097/cad.0000000000001358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exosomes, which are small extracellular vesicles, have been unveiled to carry circular RNAs (circRNAs). CircRNA paired-related homeobox 1 (circPRRX1) can be transferred by exosomes derived from gastric cancer cells. Here, we investigated the activity and mechanism of exosomal circPRRX1 in gastric tumorigenesis and radiation sensitivity. CircPRRX1, microRNA (miR)-596, and NF-κB activating protein (NKAP) were quantified by quantitative real-time PCR and immunoblotting. Cell proliferation, motility, and invasion were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and transwell assays, respectively. Cell colony formation and survival were assessed by colony formation assays. Dual-luciferase reporter assays were performed to verify the direct relationship between miR-596 and circPRRX1 or NKAP. In-vivo xenograft studies were used to evaluate the role of exosomal circPRRX1 in tumor growth. Our data showed that circPRRX1 expression was elevated in human gastric cancer, and circPRRX1 could be transferred by exosomes from gastric cancer cells. Exosomal circPRRX1 affected cell proliferation, motility, invasion, and radiation sensitivity in vitro and tumor growth in vivo. Mechanistically, circPRRX1 directly regulated miR-596 expression, and exosomal circPRRX1 affected cell biological functions at least in part through miR-596. NKAP was identified as a direct target and functionally downstream effector of miR-596. Exosomal circPRRX1 modulated NKAP expression by acting as a competing endogenous RNA (ceRNA) for miR-596. Our findings suggest a new mechanism, the exosomal circPRRX1/miR-596/NKAP ceRNA crosstalk, in regulating gastric tumorigenesis and radiation sensitivity.
Collapse
|
5
|
Yuan Y, Zhang X, Fan X, Peng Y, Jin Z. The emerging roles of circular RNA-mediated autophagy in tumorigenesis and cancer progression. Cell Death Dis 2022; 8:385. [PMID: 36104321 PMCID: PMC9474543 DOI: 10.1038/s41420-022-01172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
AbstractCircular RNA (circRNA) is characterized by a specific covalently closed ring structure. The back-splicing of precursor mRNA is the main way of circRNA generation, and various cis/trans-acting elements are involved in regulating the process. circRNAs exhibit multiple biological functions, including serving as sponges of microRNAs, interacting with proteins to regulate their stabilities and abilities, and acting as templates for protein translation. Autophagy participates in many physiological and pathological processes, especially it plays a vital role in tumorigenesis and carcinoma progression. Increasing numbers of evidences have revealed that circRNAs are implicated in regulating autophagy during tumor development. Until now, the roles of autophagy-associated circRNAs in carcinoma progression and their molecular mechanisms remain unclear. Here, the emerging regulatory roles and mechanisms of circRNAs in autophagy were summarized. Furtherly, the effects of autophagy-associated circRNAs on cancer development were described. We also prospected the potential of autophagy-associated circRNAs as novel therapeutic targets of tumors and as biomarkers for cancer diagnosis and prognosis.
Collapse
|
6
|
Wu Z, Liu P, Zhang G. Identification of circRNA-miRNA-Immune-Related mRNA Regulatory Network in Gastric Cancer. Front Oncol 2022; 12:816884. [PMID: 35280778 PMCID: PMC8907717 DOI: 10.3389/fonc.2022.816884] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of gastric cancer (GC) is still not fully understood. We aimed to find the potential regulatory network for ceRNA (circRNA–miRNA–immune-related mRNA) to uncover the pathological molecular mechanisms of GC. The expression profiles of circRNA, miRNA, and mRNA in gastric tissue from GC patients were downloaded from the Gene Expression Omnibus (GEO) datasets. Differentially expressed circRNAs, miRNAs, and immune-related mRNAs were filtered, followed by the construction of the ceRNA (circRNA–miRNA–immune-related mRNA) network. Functional annotation and protein–protein interaction (PPI) analysis of immune-related mRNAs in the network were performed. Expression validation of circRNAs and immune-related mRNAs was performed in the new GEO and TCGA datasets and in-vitro experiment. A total of 144 differentially expressed circRNAs, 216 differentially expressed miRNAs, and 2,392 differentially expressed mRNAs were identified in GC. Some regulatory pairs of circRNA–miRNA–immune-related mRNA were obtained, including hsa_circ_0050102–hsa-miR-4537–NRAS–Tgd cells, hsa_circ_0001013–hsa-miR-485-3p–MAP2K1–Tgd cells, hsa_circ_0003763–hsa-miR-145-5p–FGF10–StromaScore, hsa_circ_0001789–hsa-miR-1269b–MET–adipocytes, hsa_circ_0040573–hsa-miR-3686–RAC1–Tgd cells, and hsa_circ_0006089–hsa-miR-5584-3p–LYN–neurons. Interestingly, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN had potential diagnostic value for GC patients. In the KEGG analysis, some signaling pathways were identified, such as Rap1 and Ras signaling pathways (involved NRAS and FGF10), Fc gamma R-mediated phagocytosis and cAMP signaling pathway (involved RAC1), proteoglycans in cancer (involved MET), T-cell receptor signaling pathway (involved MAP2K1), and chemokine signaling pathway (involved LYN). The expression validation of hsa_circ_0003763, hsa_circ_0004928, hsa_circ_0040573, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN was consistent with the integrated analysis. In conclusion, the identified ceRNA (circRNA–miRNA–immune-related mRNA) regulatory network may be associated with the development of GC.
Collapse
Affiliation(s)
- Zhenhai Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| | - Pengyuan Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ganlu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
7
|
Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 2022; 20:30. [PMID: 35033106 PMCID: PMC8760667 DOI: 10.1186/s12967-022-03231-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Chen L, Ge C, Feng X, Fu H, Wang S, Zhu J, Linghu E, Zheng X. Identification of Combinations of Plasma lncRNAs and mRNAs as Potential Biomarkers for Precursor Lesions and Early Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1458320. [PMID: 35186077 PMCID: PMC8856804 DOI: 10.1155/2022/1458320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Patients with gastric cancer (GC) are usually first diagnosed at an advanced stage due to the absence of obvious symptoms at an early GC (EGC) stage. Therefore, it is necessary to identify an effective screening method to detect precursor lesions of GC (PLGC) and EGC to increase the 5-year survival rate of patients. Cell-free RNA, as a biomarker, has shown potential in early diagnosis, personalised treatment, and prognosis of cancer. In this study, six RNAs (CEBPA-AS1, INHBA-AS1, AK001058, UCA1, PPBP, and RGS18) were analysed via real-time quantitative polymerase chain reaction (RT-qPCR) using the plasma of patients with EGC and PLGC to identify diagnostic biomarkers. The receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic accuracy. Among the six RNAs, four lncRNAs (CEBPA-AS1, INHBA-AS1, AK001058, and UCA1) were upregulated and two mRNAs (PPBP and RGS18) were downregulated in the plasma of patients with PLGC and EGC. According to the findings of the ROC analysis, the four-RNA combination of INHBA-AS1, AK001058, UCA1, and RGS18 had the highest area under the curve (AUC) value for determining risk of GC in patients with PLGC and the six-RNA combination including CEBPA-AS1, INHBA-AS1, AK001058, UCA1, PPBP, and RGS18 had the highest AUC value for determining the risk of GC in patients with EGC. The results suggest the potential usefulness of noninvasive biomarkers for the molecular diagnosis of GC at earlier stages.
Collapse
Affiliation(s)
- Lu Chen
- 1Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Changhui Ge
- 1Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiuxue Feng
- 2Division of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 1000853, China
| | - Hanjiang Fu
- 1Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shasha Wang
- 2Division of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 1000853, China
| | - Jie Zhu
- 1Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Enqiang Linghu
- 2Division of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 1000853, China
| | - Xiaofei Zheng
- 1Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
9
|
Lai Q, Wang M, Hu C, Tang Y, Li Y, Hao S. Circular RNA regulates the onset and progression of cancer through the mitogen-activated protein kinase signaling pathway. Oncol Lett 2021; 22:817. [PMID: 34671431 PMCID: PMC8503804 DOI: 10.3892/ol.2021.13078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
The rapid increase in cancer morbidity and mortality worldwide is a major challenge for public health providers. Therefore, there is an urgent need to explore the molecular mechanism of tumorigenesis and identify potential diagnostic biomarkers and therapeutic methods. Circular RNA (circRNA) is characterized by a stable structure and tissue-specific expression; these features are useful in medical research and clinical applications. In recent years, with the development of high-throughput sequencing technology, the potential use of circRNA in cancer prognosis and treatment has been extensively explored. Abnormal circRNA expression interferes with specific signaling pathways such as the MAPK pathway; this phenomenon may provide potential diagnostic biomarkers and new therapeutic targets. The present article discusses the research progress on the regulatory roles of MAPK/ERK pathway-related circRNA molecules in the development and progression of different types of tumors. This review may provide insight into the development of circRNA-based cancer management strategies.
Collapse
Affiliation(s)
- Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
10
|
Zhou Q, Ju LL, Ji X, Cao YL, Shao JG, Chen L. Plasma circRNAs as Biomarkers in Cancer. Cancer Manag Res 2021; 13:7325-7337. [PMID: 34584458 PMCID: PMC8464305 DOI: 10.2147/cmar.s330228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The incidence and mortality of cancer are increasing each year. At present, the sensitivity and specificity of the blood biomarkers that were used in clinical practice are low, which make the detection rate of cancer decrease. With advances in bioinformatics and technology, some non-coding RNA as biomarkers can be easily detected through some traditional and new technologies. Circular RNAs (circRNAs) are non-coding RNAs, that is, they do not encode proteins, and have important regulatory functions. CircRNAs can remain stable in bodily fluids, such as in saliva, blood, urine, and especially plasma. The difference in the expression of plasma circRNAs between cancer patients and normal people may suggest that plasma circRNAs may play an important role in the occurrence and development of cancer. In this review, we summarized the clinical effect of plasma circRNAs in several high-incidence cancers. CircRNAs may be effective biomarkers for tumour diagnosis, treatment selection and prognosis evaluation.
Collapse
Affiliation(s)
- Qian Zhou
- Medical School of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, People's Republic of China
| | - Lin-Ling Ju
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiang Ji
- Medical School of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, People's Republic of China
| | - Ya-Li Cao
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jian-Guo Shao
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Croft PKD, Sharma S, Godbole N, Rice GE, Salomon C. Ovarian-Cancer-Associated Extracellular Vesicles: Microenvironmental Regulation and Potential Clinical Applications. Cells 2021; 10:cells10092272. [PMID: 34571921 PMCID: PMC8471580 DOI: 10.3390/cells10092272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most diagnosed gynecological cancers in women. Due to the lack of effective early stage screening, women are more often diagnosed at an advanced stage; therefore, it is associated with poor patient outcomes. There are a lack of tools to identify patients at the highest risk of developing this cancer. Moreover, early detection strategies, therapeutic approaches, and real-time monitoring of responses to treatment to improve survival and quality of life are also inadequate. Tumor development and progression are dependent upon cell-to-cell communication, allowing cancer cells to re-program cells not only within the surrounding tumor microenvironment, but also at distant sites. Recent studies established that extracellular vesicles (EVs) mediate bi-directional communication between normal and cancerous cells. EVs are highly stable membrane vesicles that are released from a wide range of cells, including healthy and cancer cells. They contain tissue-specific signaling molecules (e.g., proteins and miRNA) and, once released, regulate target cell phenotypes, inducing a pro-tumorigenic and immunosuppressive phenotype to contribute to tumor growth and metastasis as well as proximal and distal cell function. Thus, EVs are a “fingerprint” of their cell of origin and reflect the metabolic status. Additionally, via the capacity to evade the immune system and remain stable over long periods in circulation, EVs can be potent therapeutic agents. This review examines the potential role of EVs in the different aspects of the tumor microenvironment in OC, as well as their application in diagnosis, delivery of therapeutic agents, and disease monitoring.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Nihar Godbole
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Herston, QLD 4029, Australia; (P.K.-d.C); (S.S); (N.G); (G.E.R)
- Correspondence: ; Tel.: +61-7-3346-5500; Fax: +61-7-3346-5509
| |
Collapse
|
12
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
13
|
Bonelli P, Borrelli A, Tuccillo FM, Buonaguro FM, Tornesello ML. The Role of circRNAs in Human Papillomavirus (HPV)-Associated Cancers. Cancers (Basel) 2021; 13:1173. [PMID: 33803232 PMCID: PMC7963196 DOI: 10.3390/cancers13051173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of "non-coding RNAs" that originate from non-sequential back-splicing of exons and/or introns of precursor messenger RNAs (pre-mRNAs). These molecules are generally produced at low levels in a cell-type-specific manner in mammalian tissues, but due to their circular conformation they are unaffected by the cell mRNA decay machinery. circRNAs can sponge multiple microRNAs or RNA-binding proteins and play a crucial role in the regulation of gene expression and protein translation. Many circRNAs have been shown to be aberrantly expressed in several cancer types, and to sustain specific oncogenic processes. Particularly, in virus-associated malignancies such as human papillomavirus (HPV)-associated anogenital carcinoma and oropharyngeal and oral cancers, circRNAs have been shown to be involved in tumorigenesis and cancer progression, as well as in drug resistance, and some are useful diagnostic and prognostic markers. HPV-derived circRNAs, encompassing the HPV E7 oncogene, have been shown to be expressed and to serve as transcript for synthesis of the E7 oncoprotein, thus reinforcing the virus oncogenic activity in HPV-associated cancers. In this review, we summarize research advances in the biogenesis of cell and viral circRNAs, their features and functions in the pathophysiology of HPV-associated tumors, and their importance as diagnostic, prognostic, and therapeutic targets in anogenital and oropharyngeal and oral cancers.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Antonella Borrelli
- Innovative Immunological Models, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| |
Collapse
|
14
|
Leja M, Linē A. Early detection of gastric cancer beyond endoscopy - new methods. Best Pract Res Clin Gastroenterol 2021; 50-51:101731. [PMID: 33975677 DOI: 10.1016/j.bpg.2021.101731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
Early detection of gastric cancer is remaining a challenge. This review summarizes current knowledge on non-invasive methods that could be used for the purpose. The role of traditional cancer markers such as CEA, CA 72-4, CA 19-9, CA 15-3, and CA 12-5 lies mainly in therapy monitoring than early detection. Most extensive studied biomarkers (pepsinogens, ABC method) are aiming at the detection of precancerous lesions with modest sensitivity for cancer. Tests based on the detection of cancer-specific methylation patterns (PanSeer), circulating proteins and mutations in circulating tumour DNA (CancerSEEK), as well as miRNA panels have demonstrated promising results bringing those closer to practice. More extensive research is required before tests based on the detection of circulating tumour cells, extracellular vesicles and cell-free RNA could reach the practice. Detection of volatile organic compounds in the human breath is a promising development; sensor technologies for this purpose could be very attractive in screening settings.
Collapse
Affiliation(s)
- Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, 1 Gailezera iela iela, LV1079, Riga, Latvia.
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Latvia.
| |
Collapse
|
15
|
Fang J, Qi J, Dong X, Luo J. Perspectives on Circular RNAs as Prostate Cancer Biomarkers. Front Cell Dev Biol 2020; 8:594992. [PMID: 33330481 PMCID: PMC7710871 DOI: 10.3389/fcell.2020.594992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
High throughput RNA sequencing has revealed the existence of abundant circular RNAs (circRNAs) that are cell lineage-specific and have been implicated in human diseases. CircRNAs are resistant to exonuclease digestion, can carry genetic information of oncogenes, and are enriched in exosome to be transported from tissues into various body fluids. These properties make circRNAs ideal non-invasive diagnostic biomarkers for disease detection. Furthermore, many circRNAs have been demonstrated to possess biological functions in relevant cells, suggesting that they may also be potential therapeutic targets and reagents. However, our knowledge of circRNAs is still at an infant stage and far from being translated into clinics. Here, we review circRNAs in the disease setting of prostate cancer. We start by introducing the basic knowledge of circRNAs, followed by summarizing opportunities of circRNAs to be prostate cancer biomarkers, and discuss current challenges in circRNA research and outlook of future directions in translating current knowledge about circRNA into clinical practice.
Collapse
Affiliation(s)
- Jiajie Fang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Xuesen Dong
- Department of Urologic Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Jindan Luo
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|