1
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2025; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
2
|
Zhou Y, Li R. Exosomal miR-502-5p suppresses the progression of gastric cancer by repressing angiogenesis through the Wnt/β-catenin pathway. Ir J Med Sci 2024; 193:2681-2694. [PMID: 39325329 DOI: 10.1007/s11845-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a significant global health concern, ranking as the fifth most common cancer and the third leading cause of cancer-related deaths. The role of miR-502-5p in various cancers has been studied, but its specific impact on gastric cancer through exosomes is not well understood. This study aimed to investigate the role and mechanism of exosome-derived miR-502-5p in gastric cancer. METHODS Differential expression of miR-502-5p in tissues or serum of GC patients was determined using qRT-PCR. The impact of miR-502-5p on cell proliferation, migration, and invasion was assessed through in vitro and in vivo experiments. The potential of exosome-miR-502-5p to inhibit metastatic ability was also explored by using vivo and vitro assay. Furthermore, the underlying mechanism of miR-502-5p in gastric cancer was investigated using western blotting. RESULTS It was found that miR-502-5p suppressed the proliferation, migration, and invasion of gastric cancer cells. Exosome-miR-502-5p expression was negatively linked to metastatic ability and demonstrated inhibition of metastasis in vitro and in vivo. Additionally, miR-502-5p appeared to inhibit angiogenesis through the Wnt/β-catenin pathway in gastric cancer. CONCLUSIONS Exosomal miR-502-5p acts as a suppressor in the development and progression of gastric cancer, suggesting its potential as a target for anti-cancer therapy or as a diagnostic biomarker.
Collapse
Affiliation(s)
- Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Li
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
3
|
Kousa YA, Singh S, Horvath A, Tomasso F, Nazarian J, Henderson L, Mansour TA. Transcriptomic Meta-analysis Identifies Long Non-Coding RNAs Mediating Zika's Oncolytic Impact in Glioblastoma Multiforme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.605859. [PMID: 39372798 PMCID: PMC11452190 DOI: 10.1101/2024.08.04.605859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal form of brain cancer with few effective treatments. In this context, Zika virus has emerged as a promising therapeutic agent due to its ability to selectively infect and kill GBM cells. To elucidate these mechanisms and expand the landscape of oncolytic virotherapy, we pursued a transcriptomic meta-analysis comparing the molecular signatures of Zika infection in GBM and neuroblastoma (NBM). Over-representation analysis of dysregulated coding genes showed significant enrichment of tumor necrosis factor (TNF), NF-κB, and p53 signaling pathways. A refined list of long non-coding RNAs consistently dysregulated in Zika-infected GBMs was also developed. Functional review of these candidates revealed their potential regulatory role in Zika-mediated oncolysis. We performed validation of the less-researched targets in adult and pediatric GBM cell lines and found significant differential regulation, as predicted. Altogether, our results provide novel insights into the molecular mechanisms underlying the effect of Zika on GBM. We highlight potential therapeutic targets that could be further interrogated to improve the efficacy of tumor cell death and the utility of Zika as an adjuvant virotherapy for GBM and other related cancers.
Collapse
|
4
|
Wipplinger M, Mink S, Bublitz M, Gassner C. Regulation of the Lewis Blood Group Antigen Expression: A Literature Review Supplemented with Computational Analysis. Transfus Med Hemother 2024; 51:225-236. [PMID: 39135855 PMCID: PMC11318966 DOI: 10.1159/000538863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Lewis (Le) blood group system, unlike most other blood groups, is not defined by antigens produced internally to the erythrocytes and their precursors but rather by glycan antigens adsorbed on to the erythrocyte membrane from the plasma. These oligosaccharides are synthesized by the two fucosyltransferases FUT2 and FUT3 mainly in epithelial cells of the digestive tract and transferred to the plasma. At their place of synthesis, some Lewis blood group carbohydrate antigen variants also seem to be involved in various gastrointestinal malignancies. However, relatively little is known about the transcriptional regulation of FUT2 and FUT3. Summary To address this question, we screened existing literature and additionally used in silico prediction tools to identify novel candidate regulators for FUT2 and FUT3 and combine these findings with already known data on their regulation. With this approach, we were able to describe a variety of transcription factors, RNA binding proteins and microRNAs, which increase FUT2 and FUT3 transcription and translation upon interaction. Key Messages Understanding the regulation of FUT2 and FUT3 is crucial to fully understand the blood group system Lewis (ISBT 007 LE) phenotypes, to shed light on the role of the different Lewis antigens in various pathologies, and to identify potential new diagnostic targets for these diseases.
Collapse
Affiliation(s)
- Martin Wipplinger
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Medical-Scientific Faculty, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Maike Bublitz
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| |
Collapse
|
5
|
Khalife H, Fayyad-Kazan M, Fayyad-Kazan H, Hadchity E, Borghol N, Hussein N, Badran B. Lipoic acid alters the microRNA signature in breast cancer cells. Pathol Res Pract 2024; 257:155321. [PMID: 38678851 DOI: 10.1016/j.prp.2024.155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/05/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Breast cancer, the deadliest disease affecting women globally, exhibits heterogeneity with distinct molecular subtypes. Despite advances in cancer therapy, the persistence of high mortality rates due to chemotherapy resistance remains a major challenge. Lipoic acid (LA), a natural antioxidant, has proven potent anticancer properties. Yet, the impact of LA on microRNA (miRNA) expression profile in breast cancer remains unexplored. AIM The aim of this study was to unravel the effect of LA on miRNA expression profiles in different breast cancer cell lines. METHODS The MiRCURY LNA miRNA miRNome qPCR Panel was used to compare the miRNA signature in MDA-MB-231 and MCF-7 cells treated or not with LA. RESULTS We identified six upregulated and six downregulated miRNAs in LA-treated MDA-MB-231 cells and 14 upregulated and four downregulated miRNAs in LA-treated MCF-7 cells compared to control cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the deregulated miRNAs could alter different signaling cascades including FoxO, P53 and Hippo pathways. CONCLUSION The outcome of this study provides further insights into the molecular mechanisms underlying the therapeutic benefit of LA. This in turn could assist the amelioration of LA-based anticancer therapies.
Collapse
Affiliation(s)
- Hoda Khalife
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Mohammad Fayyad-Kazan
- The American University of Iraq-Baghdad, School of Arts and Sciences, Department of Natural and Applied Sciences, Baghdad, Iraq
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Elie Hadchity
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nada Borghol
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Nader Hussein
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon; Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France.
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat, Lebanon.
| |
Collapse
|
6
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
7
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|
8
|
Yun BD, Choi YJ, Son SW, Cipolla GA, Berti FCB, Malheiros D, Oh TJ, Kuh HJ, Choi SY, Park JK. Oncogenic Role of Exosomal Circular and Long Noncoding RNAs in Gastrointestinal Cancers. Int J Mol Sci 2022; 23:ijms23020930. [PMID: 35055115 PMCID: PMC8781283 DOI: 10.3390/ijms23020930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell-cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Ye Ji Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba 81531-990, Brazil; (G.A.C.); (F.C.B.B.); (D.M.)
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
- Genome-Based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research, Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (Y.J.C.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
9
|
Luo S, Deng F, Yao N, Zheng F. Circ_0005875 sponges miR-502-5p to promote renal cell carcinoma progression through upregulating E26 transformation specific-1. Anticancer Drugs 2022; 33:e286-e298. [PMID: 34407050 DOI: 10.1097/cad.0000000000001205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in various cancers, including renal cell carcinoma (RCC). We aimed to explore the role and underlying mechanism of circ_0005875 in RCC. The expression levels of circ_0005875, microRNA-502-5p (miR-502-5p) and E26 transformation specific-1 (ETS1) mRNA were determined by quantitative real-time PCR. Cell proliferation was assessed by Cell Counting Kit-8, colony formation, and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell migration and invasion were monitored by wound healing assay and transwell assay, respectively. Flow cytometry analysis was applied to determine cell apoptosis and cell cycle distribution. Western blot assay was performed to measure the protein expression of CyclinD1 and ETS1. The interaction between miR-502-5p and circ_0005875 or ETS1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft tumor model was established to confirm the role of circ_0005875 in vivo. Circ_0005875 and ETS1 were upregulated and miR-502-5p was downregulated in RCC tissues and cells. Knockdown of circ_0005875 suppressed RCC cell proliferation, migration and invasion, and induced apoptosis and cell cycle arrest. MiR-502-5p was a target of circ_0005875, and miR-502-5p inhibition reversed the inhibitory effects of circ_0005875 knockdown on the malignant behaviors of RCC cells. ETS1 was a direct target of miR-502-5p, and miR-502-5p exerted its anti-tumor role in RCC cells by targeting ETS1. Moreover, circ_0005875 knockdown decreased ETS1 expression by sponging miR-502-5p. Additionally, circ_0005875 depletion suppressed tumor growth in vivo. Circ_0005875 knockdown suppressed RCC progression by regulating miR-502-5p/ETS1 axis, which might provide a promising therapeutic target for RCC.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang
| | - Fang Deng
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture
| | - Nana Yao
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture
| | - Fu Zheng
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| |
Collapse
|
10
|
Lei C, Hou Y, Chen J. Specificity protein 1-activated bone marrow stromal cell antigen 2 accelerates pancreatic cancer cell proliferation and migration. Exp Ther Med 2021; 22:1459. [PMID: 34737799 PMCID: PMC8561758 DOI: 10.3892/etm.2021.10894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) has been reported to act as an oncogene in the tumorigenesis of numerous types of cancer. Bioinformatics analysis has predicted the binding interaction between BST2 and specificity protein 1 (SP1) and the involvement of SP1 in pancreatic cancer. Therefore, the present study set out to verify this interaction and determine how it may affect pancreatic cancer progression. Normal human pancreatic duct epithelial cells (HPDE6-C7) and pancreatic cancer cell lines (SW1990, BxPC3, PANC1 and PSN-1) were selected for western blotting and reverse transcription-quantitative PCR detection of BST2 expression. Colony formation, Cell Counting Kit-8 and wound healing assays were performed to detect the proliferative and migratory abilities of PANC1 cells following transfection with small interfering RNA against BST2. The expression of proliferation and migration markers were assayed using western blotting. Chromatin immunoprecipitation and luciferase reporter assays were employed to verify the bioinformatics prediction of BST2-SP1 binding. PANC1 cell proliferation and migration were analyzed following BST2 knockdown and SP1 overexpression. In comparison with HPDE6-C7 cells, all four pancreatic cancer cell lines were found to exhibit increased BST2 expression levels to varying degrees, with the highest levels observed in PANC1 cells. BST2 knockdown inhibited PANC1 cell colony formation, proliferation and migration. Additionally, SP1 was shown to bind to the BST2 promoter and could promote PANC1 cell proliferation and migration when overexpressed. However, BST2 knockdown rescued SP1 overexpression-induced PANC1 cell colony formation, proliferation and migration. In conclusion, activation of BST2 by the transcription factor SP1 was shown to accelerate pancreatic cancer cell proliferation and migration, suggesting that BST2 and SP1 may be plausible therapeutic targets in targeted therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chun Lei
- Department of General Surgery, Tongling People's Hospital, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling People's Hospital Affiliated to Wannan Medical College, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling Branch of the First Affiliated Hospital of University of Science and Technology of China, Tongling, Anhui 244009, P.R. China
| | - Yafeng Hou
- Department of General Surgery, Tongling People's Hospital, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling People's Hospital Affiliated to Wannan Medical College, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling Branch of the First Affiliated Hospital of University of Science and Technology of China, Tongling, Anhui 244009, P.R. China
| | - Jiong Chen
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, Anhui 230001, P.R. China
| |
Collapse
|
11
|
Zhan L, Yang J, Liu Y, Cheng Y, Liu H. MicroRNA miR-502-5p inhibits ovarian cancer genesis by downregulation of GINS complex subunit 2. Bioengineered 2021; 12:3336-3347. [PMID: 34288816 PMCID: PMC8806667 DOI: 10.1080/21655979.2021.1946347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies with high incidence and mortality and the eighth most common cancer-associated mortality in women worldwide. Aberrant expression of the GINS complex subunit 2 (GINS2) gene and miR-502-5p has been associated with cancer progression. This study aims to investigate the specific molecular mechanism of the miR-502-5p-GINS2 axis in OC. GINS2 and miR-502-5p expression in OC tissues and cell lines was measured using RT-qPCR. Next, we investigated the interaction between miR-502-5p and GINS2 using a luciferase assay. The role of the miR-502-5p-GINS2 axis was detected by assessing cell proliferation, migration, and apoptosis levels, such as caspase-3 activity and caspase-3 protein expression, in the OC cell lines CaOV3 and SKOV3, respectively. MiR-502-5p expression was decreased, and GINS2 expression was dramatically elevated in OC tissues and cells. Upregulation of miR-502-5p expression repressed cellular proliferation and migration levels but increased the cellular apoptosis level. GINS2 overexpression enhanced the proliferation and migration levels but hampered OC cell apoptosis. Moreover, miR-502-5p inhibited GINS2 expression and suppressed OC tumorigenesis. miR-502-5p targeting GINS2 suppressed OC progression by inhibiting cell growth and promoting cell apoptosis. Hence, we provide a comprehensive understanding of OC involving both miR-502-5p and GINS2, which might be effective therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Lili Zhan
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Jing Yang
- Dept of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Yang Liu
- Dept of Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Yanxiang Cheng
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Hua Liu
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| |
Collapse
|
12
|
He MQ, Wan JF, Zeng HF, Tang YY, He MQ. miR-133a-5p suppresses gastric cancer through TCF4 down-regulation. J Gastrointest Oncol 2021; 12:1007-1019. [PMID: 34295552 DOI: 10.21037/jgo-20-418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background The effect of microRNAs (miRNA) on cancer regulations has received a considerable amount of attention recently. MiR-133a-5p has been identified as an anti-tumor miRNA in several types of cancers. However, the effect of miR-133a-5p on gastric cancer (GC) have not been uncovered. In this study, we sought to evaluate the regulation of TCF4 expression by miR-133-5p and the role of the miR-25-3p/TCF4 axis in the progression of GC, with the aim of identifying a potential therapeutic target for GC. Methods TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) database were used to analyze the expression and prognosis. We performed MTT and EdU assays to elucidate the effect on cell replication. Apoptotic cells were stained with annexin V-fluorescein isothiocyanate and propidium iodide to stain, and then analyzed by flow cytometry. The effect on cell metastasis was investigated in wound healing and transwell assays. A dual-luciferase reporter assay was used to check for the direct targeting of TCF4 by miR-133a-5p. Bioinformatic analysis of the relationship of TCF4 with tumor microenvironment and the signaling cascade of TCF4 was finally performed. Results We found that the level of miR-133a-5p was decreased in both tumor tissues and GC cell lines. MiR-133a-5p inhibited cell growth and metastasis, but promoted cell apoptosis. MiR-133a-5p directly targeted TCF4 and downregulated its expression. TCF4 was highly expressed in tumor and higher level of TCF4 indicated poorer prognosis. Moreover, TCF4 overexpression reversed the aforementioned anti-tumor activity of miR-133a-5p. The expression level of TCF4 was significantly correlated with tumor-infiltrating immune cells. Conclusions Our findings altogether reveal that miR-133a-5p can serve as a tumor suppressor in gastric cancer via the miR-133a-5p/TCF4 pathway.
Collapse
Affiliation(s)
- Mu-Qun He
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Jian-Feng Wan
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Hong-Fu Zeng
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Ying-Yan Tang
- Department of Medical Oncology, FuJian Medical University Cancer Hospital, FuJian Cancer Hospital, Fuzhou, China
| | - Mu-Qing He
- Department of Medical Hematology and Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Gao H, Xu J, Qiao F, Xue L. Depletion of hsa_circ_0000144 Suppresses Oxaliplatin Resistance of Gastric Cancer Cells by Regulating miR-502-5p/ADAM9 Axis. Onco Targets Ther 2021; 14:2773-2787. [PMID: 33907420 PMCID: PMC8068497 DOI: 10.2147/ott.s281238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been disclosed to exert important roles in human cancers, including gastric cancer (GC). CircRNA hsa_circ_0000144 was identified as an oncogene in GC development. The aim of our study was to explore the role of hsa_circ_0000144 in oxaliplatin (OXA) resistance of GC. Methods Expression levels of hsa_circ_0000144, microRNA-502-5p (miR-502-5p) and A disintegrin and metalloproteinase 9 (ADAM9) were examined by quantitative real-time PCR (RT-qPCR) or Western blot assay. The OXA resistance of GC cells was evaluated by Cell Counting Kit-8 (CCK-8) assay. Colony formation assay was performed to assess the colony formation capacity. Cell apoptosis was determined by flow cytometry and caspase 3 activity. And cell migration and invasion were detected by Transwell assay. Target association between miR-502-5p and hsa_circ_0000144 or ADAM9 was demonstrated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Moreover, role of hsa_circ_0000144 in vivo was analyzed by xenograft tumor assay. Results Hsa_circ_0000144 and ADAM9 were highly expressed, while miR-502-5p was downregulated in OXA-resistant GC tissues and cells. Depletion of hsa_circ_0000144 could inhibit OXA resistance, proliferation and metastasis in OXA-resistant GC cells, which was attenuated by miR-502-5p inhibition. Hsa_circ_0000144 sponged miR-502-5p to positively regulate ADAM9 expression. MiR-502-5p suppressed OXA resistance, proliferation and metastasis in OXA-resistant GC cells by targeting ADAM9. Hsa_circ_0000144 knockdown could hamper tumor growth in vivo. Conclusion Hsa_circ_0000144 exerted inhibitory effects on OXA resistance, proliferation and metastasis of OXA-resistant GC cells by regulating miR-502-5p/ADAM9 axis, at least in part.
Collapse
Affiliation(s)
- Haifeng Gao
- Department of Clinical Laboratory, Baoji Central Hospital, Baoji City, 721008, Shaanxi Province, People's Republic of China
| | - Jiajia Xu
- Department of Organic Chemistry and Pharmaceutical Chemistry, Pharmaceutical College of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Fen Qiao
- Department of Pediatrics, Baoji Central Hospital, Baoji City, Shaanxi Province, People's Republic of China
| | - Liangjun Xue
- Department of Radiotherapy, Yijishan Hospital of Wannan Medical College, Wuhu City, Anhui Province, 241001, People's Republic of China
| |
Collapse
|