1
|
Cai Q, Wu D, Shen Y, Li S, Liu L, Liu D, Li Y, Chen X, Wang L, Zheng J. Exploring the mechanism of LncRNA CASC15 affecting hepatocellular carcinoma through miRNA. Medicine (Baltimore) 2024; 103:e35859. [PMID: 38306545 PMCID: PMC10843454 DOI: 10.1097/md.0000000000035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/09/2023] [Indexed: 02/04/2024] Open
Abstract
This study aimed to determine the potential mechanisms through which long noncoding (Lnc) RNA cancer susceptibility candidate 15 (CASC15) affects hepatocellular carcinoma (HCC). We retrieved HCC RNA-seq and clinical information from the UCSC Xena database. The differential expression (DE) of CASC15 was detected. Overall survival was analyzed using Kaplan-Meier (K-M) curves. Molecular function and signaling pathways affected by CASC15 were determined using Gene Set Enrichment Analysis. Associations between CASC15 and the HCC microenvironment were investigated using immuno-infiltration assays. A differential CASC15-miRNA-mRNA network and HCC-specific CASC15-miRNA-mRNA ceRNA network were constructed. The overexpression of CASC15 in HCC tissues was associated with histological grade, clinical stage, pathological T stage, poor survival, more complex immune cell components, and 12 immune checkpoints. We identified 27 DE miRNAs and 270 DE mRNAs in the differential CASC15-miRNA-mRNA network, and 10 key genes that were enriched in 12 cancer-related signaling pathways. Extraction of the HCC-specific CASC15-miRNA-mRNA network revealed that IGF1R, MET, and KRAS were associated with HCC progression and occurrence. Our bioinformatic findings confirmed that CASC15 is a promising prognostic biomarker for HCC, and elevated levels in HCC are associated with the tumor microenvironment. We also constructed a disease-specific CASC15-miRNA-mRNA regulatory ceRNA network that provides a new perspective for the precise indexing of patients with elevated levels of CASC15.
Collapse
Affiliation(s)
- Qingshan Cai
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Dongyang Wu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Yueling Shen
- Department of Otolaryngology, Qian ‘an People’s Hospital, Hebei Province, China
| | - Shudong Li
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Liyou Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Dong Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Yong Li
- Department of General Surgery, Tangshan Eighth Hospital, Hebei Province, China
| | - Xiaonan Chen
- Hepatobiliary Surgery Department, Tangshan Gongren Hospital, Hebei Province, China
| | - Limin Wang
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Jianxing Zheng
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| |
Collapse
|
2
|
Yue Y, Tao J, An D, Shi L. A prognostic exosome-related long non-coding RNAs risk model related to the immune microenvironment and therapeutic responses for patients with liver hepatocellular carcinoma. Heliyon 2024; 10:e24462. [PMID: 38293480 PMCID: PMC10826312 DOI: 10.1016/j.heliyon.2024.e24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the third largest cause of cancer mortality. Exosomes are vital regulators in the development of cancer. However, the mechanisms regarding the association of exosome-related long non-coding RNAs (lncRNAs) in LIHC are not clear. Methods LIHC RNA sequences and exosome-associated genes were collected according to The Cancer Genome Atlas (TCGA), Hepatocellular Carcinoma Cell DataBase (HCCDB) and ExoBCD databases, and exosome-related lncRNAs with prognostic differential expression were screened as candidate lncRNAs using Spearman's method and univariate Cox regression analysis. Candidate lncRNAs were then used to construct a prognostic model and mRNA-lncRNA co-expression network. Differentially expressed genes (DEGs) in low- and high-risk groups were identified and enrichment analysis was performed for up- and down-regulated DEGs, respectively. The expression of immune checkpoint-related genes, immune escape potential and microsatellite instability among different risk groups were further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transwell assay were applied for detecting gene expression levels and invasion and migration ability. Results Based on 17 prognostical exosome-associated lncRNAs, four hub lncRNAs (BACE1_AS, DSTNP2, PLGLA, and SNHG3) were selected for constructing a prognostic model, which was demonstrated to be an independent prognostic variable for LIHC. High risk score was indicative of poorer overall survival, lower anti-tumor immune cells, higher genomic instability, higher immune escape potential, and less benefit for immunotherapy. The qRT-PCR test verified the expression level of the lncRNAs in LIHC cells, and the inhibitory effect of BACE1_AS on immune checkpoint genes levels. BACE1_AS silence also depressed the ability of migration and invasion of LIHC cells. Conclusion The Risk model constructed by exosome-associated lncRNAs could well predict immunotherapy response and prognostic outcomes for LIHC patients. We comprehensively reveal the clinical features of prognostical exosome-related lncRNAs and their potential ability to predict immunotherapeutic response of patients with LIHC and their prognosis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| |
Collapse
|
3
|
Sayad A, Najafi S, Hussen BM, Abdullah ST, Movahedpour A, Taheri M, Hajiesmaeili M. The Emerging Roles of the β-Secretase BACE1 and the Long Non-coding RNA BACE1-AS in Human Diseases: A Focus on Neurodegenerative Diseases and Cancer. Front Aging Neurosci 2022; 14:853180. [PMID: 35386116 PMCID: PMC8978056 DOI: 10.3389/fnagi.2022.853180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023] Open
Abstract
The β-Secretase (BACE1) is widely studied to be particularly involved in amyloid deposition, a process known as the pathogenic pathway in neurodegenerative diseases. Therefore, BACE1 expression is frequently reported to be upregulated in brain samples of the patients with Alzheimer’s disease (AD). BACE1 expression is regulated by BACE1-AS, a long non-coding RNA (lncRNA), which is transcribed in the opposite direction to its locus. BACE1-AS positively regulates the BACE1 expression, and their expression levels are regulated in physiological processes, such as brain and vascular homeostasis, although their roles in the regulation of amyloidogenic process have been studied further. BACE1-AS dysregulation is reported consistent with BACE1 in a number of human diseases, such as AD, Parkinson’s disease (PD), heart failure (HF), and mild cognitive impairment. BACE1 or less BACE1-AS inhibition has shown therapeutic potentials particularly in decreasing manifestations of amyloid-linked neurodegenerative diseases. Here, we have reviewed the role of lncRNA BACE1 and BACE1-AS in a number of human diseases focusing on neurodegenerative disorders, particularly, AD.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammadreza Hajiesmaeili,
| |
Collapse
|
4
|
Nie X, Tan J. N6-methyladenosine-related lncRNAs is a potential marker for predicting prognosis and immunotherapy in ovarian cancer. Hereditas 2022; 159:17. [PMID: 35303965 PMCID: PMC8933961 DOI: 10.1186/s41065-022-00222-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background With a lack of specific symptoms, ovarian cancer (OV) is often diagnosed at an advanced stage. This coupled with inadequate prognostic indicators and treatments with limited therapeutic effect make OV the deadliest type of gynecological tumor. Recent research indicates that N6-methyladenosine (m6A) and long-chain non-coding RNA (lncRNA) play important roles in the prognosis of OV and the efficacy of immunotherapy. Results Using the Cancer Genome Atlas (TCGA) OV-related data set and the expression profiles of 21 m6A-related genes, we identified two m6A subtypes, and the differentially expressed genes between the two. Based on the differentially expressed lncRNAs in the two m6A subtypes and the lncRNAs co-expressed with the 21 m6A-related genes, single-factor cox and LASSO regression were used to further isolate the 13 major lncRNAs. Finally, multi-factor cox regression was used to construct a m6A-related lncRNA risk score model for OV, with good performance in patient prognosis. Using risk score, OV tumor samples are divided into with high- and low-score groups. We explored the differences in clinical characteristics, tumor mutational burden, and tumor immune cell infiltration between the two groups, and evaluated the risk score’s ability to predict the benefit of immunotherapy. Conclusion Our m6A-based lncRNA risk model could be used to predict the prognosis and immunotherapy response of future OV patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00222-3.
Collapse
Affiliation(s)
- Xin Nie
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
5
|
Wang M, Chen D, Xu Y, Qiu M, Jiang X, Xiong Z. Identification and Validation of the lncRNA BACE1-AS as Immune-Related Influencing Factor in Tumorigenesis following Pan-Carcinoma Analysis. J Immunol Res 2021; 2021:1589864. [PMID: 34926701 PMCID: PMC8674649 DOI: 10.1155/2021/1589864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The lncRNA BACE1-AS was identified as a plasma molecular marker in the early diagnosis of Alzheimer's disease, but its role in tumors remains poorly defined. METHODS The expression patterns, genomic mutation, and prognostic significance of BACE1-AS in pan-cancers were compared by analyzing 32 types of tumors from The Cancer Genome Atlas and cBioPortal databases. The relationships between BACE1-AS expression levels and the degree of immune cell infiltration, immune components, and immune-related genes were explored. The possible molecular mechanisms of BACE1-AS in tumors were explored using gene set enrichment analysis (GSEA). Finally, the role of BACE1-AS in hepatocellular carcinoma was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS BACE1-AS expression levels were significantly upregulated in LIHC, GBM, KIRC, CHOL, STAD, KICH, COAD, and PRAD. Higher expression levels of BACE1-AS were associated with worse overall survival in patients with HNSC and LIHC, while the opposite was found in PCPG and THCA. The overall mutation rate of BACE1-AS in pan-cancer was only approximately 0.9%, and it occurred mainly in uveal melanoma and uterine carcinoma. Generally, BACE1-AS expression was negatively correlated with the immune microenvironment. BACE1-AS expression was mainly related to naïve B cells, activated memory CD4 T cells, monocytes, M1 macrophages, M2 macrophages, and resting mast cells. The potential mechanisms of BACE1-AS in tumors were mainly via regulating the activities of B cell-mediated immunity, immune response regulating cell surface receptor signaling, RNA binding in posttranscriptional gene silencing, B cell receptor signaling pathways, and immune receptor activity. Finally, the qRT-PCR results confirmed that the expression levels of BACE1-AS in hepatocellular carcinoma cell lines were upregulated. CONCLUSIONS Overall, our results suggest that BACE1-AS is associated with the expression, prognosis, and rate of immune cell infiltration of most tumors. Thus, BACE1-AS may be a potential target for immunotherapies aimed at improving cancer patient outcomes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yushuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
6
|
Tian Q, Yan X, Yang L, Liu Z, Yuan Z, Zhang Y. Long non-coding RNA BACE1-AS plays an oncogenic role in hepatocellular carcinoma cells through miR-214-3p/APLN axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1538-1546. [PMID: 34636395 DOI: 10.1093/abbs/gmab134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
BACE1 antisense RNA (BACE1-AS) is implicated in promoting cell proliferation in different types of tumors. However, the function and mechanism of BACE1-AS in hepatocellular carcinoma (HCC) are still unclear. In the present study, we found that the relative expression of BACE1-AS in HCC cell lines, HCC tissues, and serum samples of HCC patients was significantly increased, and its high expression was correlated with the poor prognosis of HCC patients. In addition, overexpression of BACE1 promoted HCC cell proliferation, cell cycle progression, migration, and invasion, but inhibited cell apoptosis, while knockdown of BACE1 exerted the opposite role. Furthermore, BACE1-AS sponged miR-214-3p and inhibited its expression, thus promoting Apelin (APLN) expression. Overexpression or knockdown of miR-214-3p could partially reverse the abnormal proliferation, cell cycle progression, migration, invasion, and apoptosis caused by overexpression or knockdown of BACE1. These findings suggest that the BACE1-AS/miR-214-3p/APLN axis is a novel signaling pathway that facilitates HCC.
Collapse
Affiliation(s)
- Qing Tian
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital (School of Medicine, Nankai University), Tianjin 300192, China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, China
| | - Xiaodong Yan
- The First Central Clinical College of Tianjin Medical University, Tianjin 300192, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital (School of Medicine, Nankai University), Tianjin 300192, China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital (School of Medicine, Nankai University), Tianjin 300192, China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, China
| | - Zheyue Yuan
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital (School of Medicine, Nankai University), Tianjin 300192, China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, China
| | | |
Collapse
|
7
|
LncRNA BACE1-AS enhances the invasive and metastatic capacity of hepatocellular carcinoma cells through mediating miR-377-3p/CELF1 axis. Life Sci 2021; 275:119288. [PMID: 33667514 DOI: 10.1016/j.lfs.2021.119288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a malignant cancer that threatened human life seriously. Long non-coding RNA (lncRNA) BACE1-AS has been reported as a key regulator in tumorigenesis. Yet the specific correlation between BACE1-AS and HCC still needs further investigation. The primary purpose of our study is to reveal the exact correlation between BACE1-AS and HCC. MAIN METHODS Bioinformatics via TCGA database revealed BACE1-AS closely related with HCC. qRT-PCR confirmed the abnormal BACE1-AS level in HCC tissues and cells. Databases prediction suggested that miR-377-3p might be a modulatory target of BACE1-AS and luciferase assay confirmed this hypothesis. Further study discovered that CELF1 also partook in the regulatory axis of BACE1-AS/miR-377-3p. Wound healing assays and transwell assays were utilized to investigate the impact of BACE1-AS, miR-377-3p and CELF1 in vitro. In vivo metastasis was examined by pulmonary metastasis model. KEY FINDINGS This study found that BACE1-AS was overexpressed in HCC tissues and cell lines. Knockdown of BACE1-AS could restrain HCC progression in vitro, and inhibit pulmonary metastasis in vivo. MiR-377-3p was negatively modulated by BACE1-AS in HCC tumor tissues and cells. MiR-377-3p up-regulation inhibited HCC cells migration and invasion via inactivating EMT process. Moreover, CELF1 was identified as a downstream regulator of miR-377-3p and served as an oncogene in HCC cells. SIGNIFICANCE Our findings supported that lncRNA BACE1-AS was up-regulated in HCC, promoting invasion and metastasis of hepatocellular carcinoma cells by modulating miR-377-3p/CELF1 axis via contributing to EMT pathway. BACE1-AS could be a potential biomarker in HCC for future treatment.
Collapse
|