1
|
Chen M, Qi Y, Zhang S, Du Y, Cheng H, Gao S. Molecular insights into programmed cell death in esophageal squamous cell carcinoma. PeerJ 2024; 12:e17690. [PMID: 39006030 PMCID: PMC11246021 DOI: 10.7717/peerj.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a deadly type of esophageal cancer. Programmed cell death (PCD) is an important pathway of cellular self-extermination and is closely involved in cancer progression. A detailed study of its mechanism may contribute to ESCC treatment. Methods We obtained expression profiling data of ESCC patients from public databases and genes related to 12 types of PCD from previous studies. Hub genes in ESCC were screened from PCD-related genes applying differential expression analysis, machine learning analysis, linear support vector machine (SVM), random forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. In addition, based on the HTFtarget and TargetScan databases, transcription factors (TFs) and miRNAs interacting with the hub genes were selected. The relationship between hub genes and immune cells were analyzed using the CIBERSORT algorithm. Finally, to verify the potential impact of the screened hub genes on ESCC occurrence and development, a series of in vitro cell experiments were conducted. Results We screened 149 PCD-related DEGs, of which five DEGs (INHBA, LRRK2, HSP90AA1, HSPB8, and EIF2AK2) were identified as the hub genes of ESCC. The area under the curve (AUC) of receiver operating characteristic (ROC) curve of the integrated model developed using the hub genes reached 0.997, showing a noticeably high diagnostic accuracy. The number of TFs and miRNAs regulating hub genes was 105 and 22, respectively. INHBA, HSP90AA1 and EIF2AK2 were overexpressed in cancer tissues and cells of ESCC. Notably, INHBA knockdown suppressed ECSS cell migration and invasion and altered the expression of important apoptotic and survival proteins. Conclusion This study identified significant molecules with promising accuracy for the diagnosis of ESCC, which may provide a new perspective and experimental basis for ESCC research.
Collapse
Affiliation(s)
- Min Chen
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yijun Qi
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shenghua Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yubo Du
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Haodong Cheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
LIU R, LI M, HU Z, SONG Z, CHEN J. [Research Advances of RAD51AP1 in Tumor Progression and Drug Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:701-708. [PMID: 37985156 PMCID: PMC10600754 DOI: 10.3779/j.issn.1009-3419.2023.102.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 11/22/2023]
Abstract
The genomic instability may lead to an initiation of cancer in many organisms. Homologous recombination repair (HRR) is vital in maintaining cellular genomic stability. RAD51 associated protein 1 (RAD51AP1), which plays a crucial role in HRR and primarily participates in forming D-loop, was reported as an essential protein for maintaining cellular genomic stability. However, recent studies showed that RAD51AP1 was significantly overexpressed in various cancer types and correlated with poor prognosis. These results suggested that RAD51AP1 may play a significant pro-cancer effect in multiple cancers. The underlying mechanism is still unclear. Cancer stemness-maintaining effects of RAD51AP1 might be considered as the most reliable mechanism. Meanwhile, RAD51AP1 also promoted resistance to radiation therapy and chemotherapy in many cancers. Thus, researches focused on RAD51AP1, and its regulatory molecules may provide new targets for overcoming cancer progression and treatment resistance. Here, we reviewed the latest research on RAD51AP1 in cancers and summarized its differential expression and prognostic implications. In this review, we also outlined the potential mechanisms of its pro-cancer and drug resistance-promoting effects to provide several potential directions for further research.
.
Collapse
|
3
|
Lei X, Hu X, Lu Q, Fu W, Sun W, Ma Q, Huang D, Xu Q. Ubiquitin‑conjugating enzymes as potential biomarkers and therapeutic targets for digestive system cancers (Review). Oncol Rep 2023; 49:63. [PMID: 36799184 PMCID: PMC9944987 DOI: 10.3892/or.2023.8500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Digestive system cancers are the leading cause of cancer‑related death worldwide due to their high morbidity and mortality rates. The current treatment methods include surgical treatment, chemotherapy, radiotherapy and endoscopic treatment, and the precisely targeted therapy of digestive system cancers requires to be further studied. The ubiquitin‑proteasome system is the main pathway for protein degradation in cells and the ubiquitin‑conjugating enzymes (E2s) have a decisive role in the specific selection of target proteins for degradation. The E2s have an important physiological role in digestive system cancers, which is related to the clinical tumor stage, differentiation degree and poor prognosis. Furthermore, they are involved in the physiological processes of digestive system tumor cell proliferation, migration, invasion, stemness, drug resistance and autophagy. In the present article, the progress and achievements of the E2s in gastric cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, intrahepatic cholangiocarcinoma, gallbladder cancer and esophageal squamous cell carcinoma were reviewed, which may provide early screening indicators and reliable therapeutic targets for digestive system cancers.
Collapse
Affiliation(s)
- Xiangxiang Lei
- Institute of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoge Hu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wen Sun
- Second Clinical Medical Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qiancheng Ma
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China,Correspondence to: Dr Dongsheng Huang or Dr Qiuran Xu, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Gongshu, Hangzhou, Zhejiang 310014, P.R. China, E-mail:
| |
Collapse
|
4
|
Bennett AN, Huang RX, He Q, Lee NP, Sung WK, Chan KHK. Drug repositioning for esophageal squamous cell carcinoma. Front Genet 2022; 13:991842. [PMID: 36246638 PMCID: PMC9554346 DOI: 10.3389/fgene.2022.991842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.
Collapse
Affiliation(s)
- Adam N. Bennett
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rui Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wing-Kin Sung
- Department of Computer Sciences, National University of Singapore, Singapore, Singapore
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| |
Collapse
|