1
|
Mokhlesian M, Heydari F, Boskabadi SJ, Baradari AG, Ajami A, Alizadeh-Navaei R. The Effect of Dexmedetomidine on Inflammatory Factors and Clinical Outcomes in Patients With Septic Shock: A Randomized Clinical Trial. Clin Ther 2024:S0149-2918(24)00331-X. [PMID: 39638724 DOI: 10.1016/j.clinthera.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Dexmedetomidine is a sedative-analgesic that is widely used in sepsis. However, its effect on septic shock remains unclear. This study aimed to investigate dexmedetomidine's effect on inflammatory biomarkers in septic shock. METHODS The present study was a randomized controlled clinical trial. Patients with inclusion criteria were randomly allocated into either the dexmedetomidine (n = 24) or morphine + midazolam group (n = 24). The primary outcome was changes in inflammatory factors, including IL-1, IL-6, TNF-α, ESR, and CRP. The serum levels of inflammatory factors were measured at baseline and the end of the intervention. Secondary outcomes included the change in norepinephrine dose, vital signs, and SOFA scores. FINDINGS Of the 48 subjects, 52.08% were male. After intervention, IL-1, IL-6, and TNF-α levels significantly differed between the 2 groups (p = 0.011 and p < 0.001 and p < 0.001, respectively). Heart rate and systolic blood pressure decreased over time, but the two groups had no significant difference (p-value > 0.05). In addition, there was no significant difference in norepinephrine dose and SOFA score between the 2 groups (p-value > 0.05). IMPLICATIONS Sedation with dexmedetomidine can attenuate the inflammatory factors in septic shock. Also, dexmedetomidine did not worsen the hemodynamic parameters in septic shock patients.
Collapse
Affiliation(s)
- Mahdi Mokhlesian
- Department of Anesthesiology, Faculty of Medicine, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Heydari
- Department of Anesthesiology, Faculty of Medicine, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Javad Boskabadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Gholipour Baradari
- Department of Anesthesiology, Faculty of Medicine, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, Faculty of Medicine, Antimicrobial Resistance Research Center, The Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Sari Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Bu C, Wang Z, Lv X, Zhao Y. A dual-gene panel of two fragments of methylated IRF4 and one of ZEB2 in plasma cell-free DNA for gastric cancer detection. Epigenetics 2024; 19:2374988. [PMID: 39003776 PMCID: PMC11249030 DOI: 10.1080/15592294.2024.2374988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.
Collapse
Affiliation(s)
- Chunxiao Bu
- Department of Magnetic Resonance Imaging,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilong Wang
- Henan Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Xianping Lv
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chen W, Ye Q, Zhang B, Ma Z, Tu H. Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification. J Proteome Res 2024; 23:5122-5130. [PMID: 39417528 DOI: 10.1021/acs.jproteome.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.
Collapse
Affiliation(s)
- Wujie Chen
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Qihua Ye
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Biying Zhang
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Zhenhua Ma
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Hanxiao Tu
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| |
Collapse
|
4
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03451-7. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Joshi N, Bhat F, Bellad A, Sathe G, Jain A, Chavan S, Sirdeshmukh R, Pandey A. Urinary Proteomics for Discovery of Gastric Cancer Biomarkers to Enable Precision Clinical Oncology. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:361-371. [PMID: 37579183 PMCID: PMC10625469 DOI: 10.1089/omi.2023.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
For precision in clinical oncology practice, detection of tumor-derived peptides and proteins in urine offers an attractive and noninvasive alternative for diagnostic or screening purposes. In this study, we report comparative quantitative proteomic profiling of urine samples from patients with gastric cancer and healthy controls using tandem mass tags-based multiplexed mass spectrometry approach. We identified 1504 proteins, of which 246 were differentially expressed in gastric cancer cases. Notably, ephrin A1 (EFNA1), pepsinogen A3 (PGA3), sortilin 1 (SORT1), and vitronectin (VTN) were among the upregulated proteins, which are known to play crucial roles in the progression of gastric cancer. We also found other overexpressed proteins, including shisa family member 5 (SHISA5), mucin like 1 (MUCL1), and leukocyte cell derived chemotaxin 2 (LECT2), which had not previously been linked to gastric cancer. Using a novel approach for targeted proteomics, SureQuant, we validated changes in abundance of a subset of proteins discovered in this study. We confirmed the overexpression of vitronectin and sortilin 1 in an independent set of urine samples. Altogether, this study provides molecular candidates for biomarker development in gastric cancer, and the findings also support the promise of urinary proteomics for noninvasive diagnostics and personalized/precision medicine in the oncology clinic.
Collapse
Affiliation(s)
- Neha Joshi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Firdous Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anikha Bellad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandip Chavan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Mencel J, Slater S, Cartwright E, Starling N. The Role of ctDNA in Gastric Cancer. Cancers (Basel) 2022; 14:5105. [PMID: 36291888 PMCID: PMC9600786 DOI: 10.3390/cancers14205105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating tumour DNA (ctDNA) has potential applications in gastric cancer (GC) with respect to screening, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision making and therapeutic monitoring. It can provide a less invasive and convenient method to capture the tumoural genomic landscape compared to tissue-based next-generation DNA sequencing (NGS). In addition, ctDNA can potentially overcome the challenges of tumour heterogeneity seen with tissue-based NGS. Although the evidence for ctDNA in GC is evolving, its potential utility is far reaching and may shape the management of this disease in the future. This article will review the current and future applications of ctDNA in GC.
Collapse
Affiliation(s)
| | | | | | - Naureen Starling
- Gastrointestinal and Lymphoma Unit, Royal Marsden NHS Foundation, London SW3 6JJ, UK
| |
Collapse
|
7
|
Jiang T, Mei L, Yang X, Sun T, Wang Z, Ji Y. Biomarkers of gastric cancer: current advancement. Heliyon 2022; 8:e10899. [PMID: 36247151 PMCID: PMC9561735 DOI: 10.1016/j.heliyon.2022.e10899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant types worldwide, especially in East Asia. Due to its frequently advanced stage at diagnosis, the mortality from GC is high and the prognosis is still unsatisfactory. Thus, early detection using effective screening approaches is vital to decrease the morbidity and mortality of GC. Interestingly, biomarkers can be used for diagnosis, prediction of sensitivity to treatment, and prognosis in GC. The potential biomarkers detectable in liquid biopsies such as circulating tumor cells (CTCs), long non-coding RNAs (lncRNAs), cell-free DNA (cfDNA), microRNAs, and exosomes reveal numerous information regarding the early prediction and the outcomes for GC patients. Additionally, using the novel serum biomarkers has opened up new opportunities for diagnosing and monitoring patients with GC. This review mainly summarizes the novel progress and approaches in GC biomarkers, which could be potentially used for early diagnosis and therapy monitoring. Meanwhile, we also discussed the advantages, disadvantages, and future perspectives of GC biomarkers.
Collapse
Affiliation(s)
- Tiantian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiao Yang
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Tingkai Sun
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
8
|
Moravveji SS, Khoshbakht S, Mokhtari M, Salimi M, Lanjanian H, Nematzadeh S, Torkamanian-Afshar M, Masoudi-Nejad A. Impact of 5HydroxyMethylCytosine (5hmC) on reverse/direct association of cell-cycle, apoptosis, and extracellular matrix pathways in gastrointestinal cancers. BMC Genom Data 2022; 23:49. [PMID: 35768769 PMCID: PMC9241275 DOI: 10.1186/s12863-022-01061-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant levels of 5-hydroxymethylcytosine (5-hmC) can lead to cancer progression. Identification of 5-hmC-related biological pathways in cancer studies can produce better understanding of gastrointestinal (GI) cancers. We conducted a network-based analysis on 5-hmC levels extracted from circulating free DNAs (cfDNA) in GI cancers including colon, gastric, and pancreatic cancers, and from healthy donors. The co-5-hmC network was reconstructed using the weighted-gene co-expression network method. The cancer-related modules/subnetworks were detected. Preservation of three detected 5-hmC-related modules was assessed in an external dataset. The 5-hmC-related modules were functionally enriched, and biological pathways were identified. The relationship between modules was assessed using the Pearson correlation coefficient (p-value < 0.05). An elastic network classifier was used to assess the potential of the 5-hmC modules in distinguishing cancer patients from healthy individuals. To assess the efficiency of the model, the Area Under the Curve (AUC) was computed using five-fold cross-validation in an external dataset. RESULTS The main biological pathways were the cell cycle, apoptosis, and extracellular matrix (ECM) organization. Direct association between the cell cycle and apoptosis, inverse association between apoptosis and ECM organization, and inverse association between the cell cycle and ECM organization were detected for the 5-hmC modules in GI cancers. An AUC of 92% (0.73-1.00) was observed for the predictive model including 11 genes. CONCLUSION The intricate association between biological pathways of identified modules may reveal the hidden significance of 5-hmC in GI cancers. The identified predictive model and new biomarkers may be beneficial in cancer detection and precision medicine using liquid biopsy in the early stages.
Collapse
Affiliation(s)
- Sayyed Sajjad Moravveji
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Samane Khoshbakht
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Majid Mokhtari
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Lanjanian
- Molecular Biology and Genetics Department, Engineering and Natural Science Faculty, Istinye University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Computer Engineering Department, Architecture and Engineering Faculty, Nisantasi University, Istanbul, Turkey
| | - Mahsa Torkamanian-Afshar
- Computer Engineering Department, Architecture and Engineering Faculty, Nisantasi University, Istanbul, Turkey
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Zeng Y, Rong H, Xu J, Cao R, Li S, Gao Y, Cheng B, Zhou T. DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front Genet 2022; 13:823905. [PMID: 35309131 PMCID: PMC8931997 DOI: 10.3389/fgene.2022.823905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is a very common malignancy with a poor prognosis, and its occurrence and development are closely related to epigenetic modifications. Methylation of DNA before or during gastric cancer is an interesting research topic. This article reviews the studies on DNA methylation related to the cause, diagnosis, treatment, and prognosis of gastric cancer and aims to find cancer biomarkers to solve major human health problems.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Rong
- Department of Reconstructive Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruyue Cao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhua Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baoquan Cheng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Tao Zhou,
| |
Collapse
|
10
|
Optimising Multimodality Treatment of Resectable Oesophago-Gastric Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14030586. [PMID: 35158854 PMCID: PMC8833621 DOI: 10.3390/cancers14030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Oesophageal (food pipe) and stomach cancers are amongst the hard-to-treat cancers that result in significant illness and deaths around the globe. Over the last few decades, there has been remarkable progress in the treatment of these cancers as a result of advances in diagnosis, surgical techniques, systemic therapy and radiotherapy. However, even if caught in the early stages, most patients with these cancers will unfortunately have their cancers come back, usually becoming widespread and difficult to treat. Therefore, optimising the early treatment strategy of these cancers is essential to improve the outcome and reduce the risk of recurrence. There are currently various geographically influenced standard of care management practices of early stomach and oesophageal cancers, ranging from using chemotherapy before and after surgery to the use of combined chemoradiotherapy before surgery and more recently the use of immunotherapy after surgery. However, it is not very clear if one strategy is significantly better than the others and there are some ongoing studies aiming to directly compare these treatment options. In addition, our understanding of the molecular and genetic features of these cancers can help improve our clinical practice and inform our choice of the best treatment strategy for the individual patient. Abstract Oesophago–gastric adenocarcinoma remains a leading cause of cancer-related morbidity and mortality worldwide. Although there has been an enormous progress in the multimodality management of resectable oesophago–gastric adenocarcinoma, most patients still develop a recurrent disease that eventually becomes resistant to systemic therapy. Currently, there is no global consensus on the optimal multimodality approach and there are variations in accepted standards of care, ranging from preoperative chemoradiation to perioperative chemotherapy and, more recently, adjuvant immune checkpoint inhibitors. Ongoing clinical trials are aimed to directly compare multimodal treatment options as well as the additional benefit of targeted therapies and immunotherapies. Furthermore, our understanding of the molecular and genetic features of oesophago–gastric cancer has improved significantly over the last decade and these data may help inform the best approach for the individual patient, utilising biomarker selection and precision medicine.
Collapse
|
11
|
Advances in the Aetiology & Endoscopic Detection and Management of Early Gastric Cancer. Cancers (Basel) 2021; 13:cancers13246242. [PMID: 34944861 PMCID: PMC8699285 DOI: 10.3390/cancers13246242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Gastric adenocarcinoma has remained a highly lethal disease. Awareness and recognition of preneoplastic conditions (including gastric atrophy and intestinal metaplasia) using high-resolution white-light endoscopy as well as chromoendoscopy is therefore essential. Helicobacter pylori, a class I carcinogen, remains the main contributor to the development of sporadic distal gastric neoplasia. Management of early gastric neoplasia with endoscopic resections should be in line with standard indications. A multidisciplinary approach to any case of an early gastric neoplasia is imperative. Hereditary forms of gastric cancer require a tailored approach and individua-lized surveillance. Abstract The mortality rates of gastric carcinoma remain high, despite the progress in research and development in disease mechanisms and treatment. Therefore, recognition of gastric precancerous lesions and early neoplasia is crucial. Two subtypes of sporadic gastric cancer have been recognized: cardia subtype and non-cardia (distal) subtype, the latter being more frequent and largely associated with infection of Helicobacter pylori, a class I carcinogen. Helicobacter pylori initiates the widely accepted Correa cascade, describing a stepwise progression through precursor lesions from chronic inflammation to gastric atrophy, gastric intestinal metaplasia and neoplasia. Our knowledge on He-licobacter pylori is still limited, and multiple questions in the context of its contribution to the pathogenesis of gastric neoplasia are yet to be answered. Awareness and recognition of gastric atrophy and intestinal metaplasia on high-definition white-light endoscopy, image-enhanced endoscopy and magnification endoscopy, in combination with histology from the biopsies taken accurately according to the protocol, are crucial to guiding the management. Standard indications for endoscopic resections (endoscopic mucosal resection and endoscopic submucosal dissection) of gastric dysplasia and intestinal type of gastric carcinoma have been recommended by multiple societies. Endoscopic evaluation and surveillance should be offered to individuals with an inherited predisposition to gastric carcinoma.
Collapse
|
12
|
MiR-1307: A comprehensive review of its role in various cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Herrera-Pariente C, Montori S, Llach J, Bofill A, Albeniz E, Moreira L. Biomarkers for Gastric Cancer Screening and Early Diagnosis. Biomedicines 2021; 9:biomedicines9101448. [PMID: 34680565 PMCID: PMC8533304 DOI: 10.3390/biomedicines9101448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most common cancers worldwide, with a bad prognosis associated with late-stage diagnosis, significantly decreasing the overall survival. This highlights the importance of early detection to improve the clinical course of these patients. Although screening programs, based on endoscopic or radiologic approaches, have been useful in countries with high incidence, they are not cost-effective in low-incidence populations as a massive screening strategy. Additionally, current biomarkers used in daily routine are not specific and sensitive enough, and most of them are obtained invasively. Thus, it is imperative to discover new noninvasive biomarkers able to diagnose early-stage gastric cancer. In this context, liquid biopsy is a promising strategy. In this review, we briefly discuss some of the potential biomarkers for gastric cancer screening and diagnosis identified in blood, saliva, urine, stool, and gastric juice.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Sheyla Montori
- UPNA, IdiSNA, Navarrabiomed Biomedical Research Center, Gastrointestinal Endoscopy Research Unit, 31008 Pamplona, Spain; (S.M.); (E.A.)
| | - Joan Llach
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Alex Bofill
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
| | - Eduardo Albeniz
- UPNA, IdiSNA, Navarrabiomed Biomedical Research Center, Gastrointestinal Endoscopy Research Unit, 31008 Pamplona, Spain; (S.M.); (E.A.)
- Endoscopy Unit, Gastroenterology Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (J.L.); (A.B.)
- Correspondence:
| |
Collapse
|
14
|
Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021; 13:341. [PMID: 33494545 PMCID: PMC7866063 DOI: 10.3390/polym13030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymer nanoparticles and nano/micromotors are novel nanostructures that are of increased interest especially in the diagnosis and therapy of cancer. These structures are modified by antibodies or nucleic acid aptamers and can recognize the cancer markers at the membrane of the cancer cells or in the intracellular side. They can serve as a cargo for targeted transport of drugs or nucleic acids in chemo- immuno- or gene therapy. The various mechanisms, such as enzyme, ultrasound, magnetic, electrical, or light, served as a driving force for nano/micromotors, allowing their transport into the cells. This review is focused on the recent achievements in the development of polymer nanoparticles and nano/micromotors modified by antibodies and nucleic acid aptamers. The methods of preparation of polymer nanoparticles, their structure and properties are provided together with those for synthesis and the application of nano/micromotors. The various mechanisms of the driving of nano/micromotors such as chemical, light, ultrasound, electric and magnetic fields are explained. The targeting drug delivery is based on the modification of nanostructures by receptors such as nucleic acid aptamers and antibodies. Special focus is therefore on the method of selection aptamers for recognition cancer markers as well as on the comparison of the properties of nucleic acid aptamers and antibodies. The methods of immobilization of aptamers at the nanoparticles and nano/micromotors are provided. Examples of applications of polymer nanoparticles and nano/micromotors in targeted delivery and in controlled drug release are presented. The future perspectives of biomimetic nanostructures in personalized nanomedicine are also discussed.
Collapse
Affiliation(s)
| | | | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia; (V.S.); (V.O.)
| |
Collapse
|