1
|
Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA. Cracking the code of Annexin A1-mediated chemoresistance. Biochem Biophys Res Commun 2024; 725:150202. [PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
Collapse
Affiliation(s)
- Thanusha Ganesan
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia; School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
2
|
Tang J, Gu Z, Yang Z, Ma L, Liu Q, Shi J, Niu N, Wang Y. Bibliometric analysis of bone metastases from lung cancer research from 2004 to 2023. Front Oncol 2024; 14:1439209. [PMID: 39165682 PMCID: PMC11333251 DOI: 10.3389/fonc.2024.1439209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Bone metastases of lung cancer (BMLC) severely diminish patients' quality of life due to bone-related events, and the lack of clear guidelines globally regarding medical and surgical treatment significantly reduces patient survival. While knowledge about BMLC has grown exponentially over the past two decades, a comprehensive and objective bibliometric analysis remains absent. Methods A comprehensive bibliometric analysis was conducted on relevant literature on BMLC extracted from the Web of Science database from 2004 to 2023 by Biblioshiny, VOSviewer, Scimago Graphica, CiteSpace, and Microsoft Office Excel Professional Plus 2016 software. 936 papers related to BMLC were extracted from the Web of Science Core Collection (WoSCC). The number of publications, countries, institutions, global collaborations, authors, journals, keywords, thematic trends, and cited references were then visualized. Finally, the research status and development direction in the last 20 years were analyzed. Results This study included a total of 936 papers on BMLC from 2004 to 2023. There has been a steady increase in global publications each year, peaking in 2021. China had the highest number of publications, followed by Japan and the United States. Additionally, China had the most citations with an H-index of 35, while the US followed with an H-index of 34, highlighting their significant contributions to the field. "Frontiers in Oncology" had the highest number of publications. CiteSpace analysis identified "lung cancer," "bone metastasis," and "survival" as the top high-frequency keywords, encapsulating the core research focus. Keyword clustering analysis revealed six main clusters representing the primary research directions. Burst analysis of keywords showed that "skeletal complications" had the highest burst intensity from 2005 to 2013, while recent research trends include "immunotherapy" and "denosumab," with bursts from 2021 to 2023. Trend topic analysis indicated that "non-small cell lung cancer," "immunotherapy," and "immune checkpoint inhibitors" represent the cutting-edge research directions in this field. Conclusion This article reveals the current status and trend of research on BMLC, which is increasing worldwide. China and the United States have contributed the most, but international cooperative research on BMLC should be strengthened. The pathogenesis, early prevention, and individualized treatment of BMLC need to be strengthened for further study, and immunotherapy is the next hotspot of lung cancer bone metastasis research.
Collapse
Affiliation(s)
- Jing Tang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhangui Gu
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zongqiang Yang
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Long Ma
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qiang Liu
- First Clinical Medical College, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiandang Shi
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningkui Niu
- Department of Orthopedic, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanyang Wang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Li L, Wang B, Zhao S, Xiong Q, Cheng A. The role of ANXA1 in the tumor microenvironment. Int Immunopharmacol 2024; 131:111854. [PMID: 38479155 DOI: 10.1016/j.intimp.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanxin Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglin Xiong
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Shi X, Wu Y, Tang L, Ni H, Xu Y. Downregulated annexin A1 expression correlates with poor prognosis, metastasis, and immunosuppressive microenvironment in Ewing's sarcoma. Aging (Albany NY) 2023; 15:2321-2346. [PMID: 36988561 PMCID: PMC10085606 DOI: 10.18632/aging.204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Ewing's sarcoma (ES) is a common bone malignancy in children and adolescents that severely affects the prognosis of patients. The aim of this study was to identify novel biomarkers and potential therapeutic targets for ES. METHODS Highly prognosis-related hub genes were identified by independent prognostic analysis in the GSE17679 dataset. We then performed survival analysis, Cox regression analysis and clinical correlation analysis on the key gene and validated them with the GSE63157, GSE45544 and GSE73166 datasets. Differentially expressed genes (DEGs) were screened based on the high and low expression of key gene, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were performed to explore the underlying mechanisms of ES, and significant module genes were established based on protein-protein interaction (PPI) networks. Furthermore, the correlations between module genes and the immune microenvironment were analyzed and the correlations between the key gene and immune infiltration levels in sarcoma were investigated using TIMER and TISIDB. Finally, the expression levels of these key genes in ES cell lines (RD-ES and A673 cells) were further validated by real-time quantitative PCR (RT-qPCR). CCK-8 and EdU assays were performed to assess the effect of ANXA1 knockdown on RD-ES cell proliferation. RESULTS ANXA1 was identified as a key gene for ES prognosis. The overall survival (OS) time of patients with low ANXA1 expression was shorter, and the expression level of ANXA1 in the metastatic group was significantly lower than that in the primary group (P<0.01). Additionally, the abundance of 12 immune cells in the ANXA1 low-expression group was significantly lower than that in the high-expression group (all P<0.05), which may be related to the inhibition of the immune microenvironment. A PPI network was constructed based on 96 DEGs to further identify the five ANXA1-related module genes (COL1A2, MMP9, VIM, S100A11 and S100A4). The expression levels of ANXA1, COL1A2, MMP9, VIM, S100A11 and S100A4 were significantly different between ES cell lines and mesenchymal stem cells after validation in two ES cell lines (all P<0.01). Among these genes, ANXA1, COL1A2, MMP9, VIM and S100A4 were significantly associated with the prognosis of ES patients (all P<0.05). Importantly, ANXA1 knockdown significantly promoted the proliferation of RD-ES cells, which may explain the susceptibility to ES metastasis in the ANXA1 low-expression group. CONCLUSIONS ANXA1 may serve as an independent prognostic biomarker for ES patients and is associated with metastasis and the immunosuppressive microenvironment in ES, which needs to be validated in further studies.
Collapse
Affiliation(s)
- Xiangwen Shi
- Kunming Medical University, Kunming, China
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| | - Yipeng Wu
- Kunming Medical University, Kunming, China
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| | - Linmeng Tang
- Bone and Joint Imaging Center, Department of Medical Imaging and Radiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Haonan Ni
- Kunming Medical University, Kunming, China
| | - Yongqing Xu
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| |
Collapse
|
5
|
Zhang H, Zhang Z, Guo T, Chen G, Liu G, Song Q, Li G, Xu F, Dong X, Yang F, Cao C, Zhong D, Li S, Li Y, Wang M, Li B, Yang L. Annexin A protein family: Focusing on the occurrence, progression and treatment of cancer. Front Cell Dev Biol 2023; 11:1141331. [PMID: 36936694 PMCID: PMC10020606 DOI: 10.3389/fcell.2023.1141331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, China
| | - Guichun Li
- Department of Traditional Chinese Medicine, The People’s Hospital of Zhaoyuan City, Yantai, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| |
Collapse
|
6
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|
7
|
Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular Mechanisms of Chemoresistance Induced by Cisplatin in NSCLC Cancer Therapy. Int J Mol Sci 2021; 22:8885. [PMID: 34445588 PMCID: PMC8396273 DOI: 10.3390/ijms22168885] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells utilise several mechanisms to increase their survival and progression as well as their resistance to anticancer therapy: deregulation of growth regulatory pathways by acquiring grow factor independence, immune system suppression, reducing the expression of antigens activating T lymphocyte cells (mimicry), induction of anti-apoptotic signals to counter the action of drugs, activation of several DNA repair mechanisms and driving the active efflux of drugs from the cell cytoplasm, and epigenetic regulation by microRNAs (miRNAs). Because it is commonly diagnosed late, lung cancer remains a major malignancy with a low five-year survival rate; when diagnosed, the cancer is often highly advanced, and the cancer cells may have acquired drug resistance. This review summarises the main mechanisms involved in cisplatin resistance and interactions between cisplatin-resistant cancer cells and the tumour microenvironment. It also analyses changes in the gene expression profile of cisplatin sensitive vs. cisplatin-resistant non-small cell lung cancer (NSCLC) cellular model using the GSE108214 Gene Expression Omnibus database. It describes a protein-protein interaction network that indicates highly dysregulated TP53, MDM2, and CDKN1A genes as they encode the top networking proteins that may be involved in cisplatin tolerance, these all being upregulated in cisplatin-resistant cells. Furthermore, it illustrates the multifactorial nature of cisplatin resistance by examining the diversity of dysregulated pathways present in cisplatin-resistant NSCLC cells based on KEGG pathway analysis.
Collapse
Affiliation(s)
- Jolanta Kryczka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | | | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| |
Collapse
|
8
|
Ju L, Zhu L, Wu H, Yu M, Yin X, Jia Z, Feng L, Ying S, Xia H, Zhang S, Lou J, Yang J. miR221 regulates cell migration by targeting annexin a1 expression in human mesothelial MeT-5A cells neoplastic-like transformed by multi-walled carbon nanotube. Genes Environ 2021; 43:34. [PMID: 34340715 PMCID: PMC8327461 DOI: 10.1186/s41021-021-00209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background Multi-walled carbon nanotube (MWCNT) is one of the most widely used manufactured nanomaterials, however, its potential harmful effect on human health is of great concern. Previously we have shown the acute and chronic exposure to MWCNT induced different responses in human mesothelial MeT-5A cells. In the current study, MeT-5A cells were continuously subjected to MWCNT exposure at 10 μg/cm2 for 48 h per passage, up to a whole year, to further clarify the carcinogesis and its potential mechanisms of MWCNT. Results After one-year MWCNT treatment, MeT-5A cells exhibited neoplastic-like properties, including morphological changes, anchorage-independent growth, increased cell proliferation and cell migration. Further examination revealed the expression of microRNA 221 (miR221) was gradually decreased, while the annexin a1 expression was increased at both the mRNA and protein level during the exposure. Bioinformatic analysis indicated that annexin a1 is a target for miR221 regulation, and it was confirmed by transfecting cells with miR221 mimics, which resulted in the downregulation of annexin a1. Detailed analyses demonstrated miR221 was involved in the regulation of cell migration, e.g., downregulation of miR221 or overexpression of ANNEXIN A1, contributed to the increased cell migration. In contrast, overexpression of miR221 or downregulation of ANNEXIN A1 slowed cell migration. Conclusions Taken together, these results point to a neoplastic-transforming property of MWCNT, and the miR221-annexin a1 axis is involved in the regulation of cell migration in the transformed cells. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00209-y.
Collapse
Affiliation(s)
- Li Ju
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Lijin Zhu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Hao Wu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Yu
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Xianhong Yin
- Jiading District Center for Disease Control and Prevention, Shanghai, 201800, China
| | - Zhenyu Jia
- Hangzhou Medical College, Hangzhou, 310013, China
| | | | - Shibo Ying
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Hailing Xia
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Shuzhi Zhang
- Hangzhou Medical College, Hangzhou, 310013, China
| | - Jianlin Lou
- Hangzhou Medical College, Hangzhou, 310013, China.
| | - Jun Yang
- Hangzhou Normal University, School of Public Health, Hangzhou, 310036, China.
| |
Collapse
|