1
|
Zhang R, Chen S, Luo T, Guo S, Qu J. Activated Tim-3/Galectin-9 participated in the development of multiple myeloma by negatively regulating CD4 T cells. Hematology 2024; 29:2288481. [PMID: 38108336 DOI: 10.1080/16078454.2023.2288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The interaction between Tim-3 on T cells and its ligand Galectin-9 negatively regulates the cellular immune response. However, the regulation of Tim-3/Galectin-9 on CD4 T cell subsets in multiple myeloma (MM) remains unclear. The aim of this study was to investigate the relationship between the regulation of CD4 T cell subsets by the Tim-3/Galectin-9 pathway and clinical prognostic indicators in MM. Tim-3/Galectin-9 were detected by flow cytometry, PCR and ELISA in 60 MM patients and 40 healthy controls, and its correlation with clinical prognostic parameters was analyzed. The expressions of Tim-3 on CD4 T cells, Galectin-9 mRNA in PBMC and level of Galectin-9 protein in serum were significantly elevated in MM patients, especially those with poor prognostic indicators. In MM patients, Tim-3 was highly expressed on the surfaces of Th1, Th2, and Th17 cells, but lowly expressed on Treg. Moreover, level of cytokine IFN-γ in serum was negatively correlated with Tim-3+Th1 cell and Galectin-9mRNA, Galectin-9 protein level. In addition, cell culture experiments showed that the anti-tumor effect and the ability to secrete IFN-γ were restored by blocking the Tim-3/Galectin-9 pathway. In MM patients, Tim-3/Galectin-9 is elevated and associated with disease progression, by inhibiting the cytotoxic function of Th1, and also promoting Th2 and Th17 to be involved in immune escape of MM. Therefore, Tim-3/Galectin-9 may serve as a new immunotherapeutic target for MM patients.
Collapse
Affiliation(s)
- Rui Zhang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Shuang Chen
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Tingting Luo
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Sha Guo
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| | - Jianhua Qu
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous, Xinjing, People's Republic of China
- Hematology Institute of Xinjiang Uygur Autonomous Region, Xinjing, People's Republic of China
| |
Collapse
|
2
|
Klaihmon P, Samart P, Rojanasakul Y, Issaragrisil S, Luanpitpong S. Anti-TIM3 chimeric antigen receptor-natural killer cells preferentially target primitive acute myeloid leukemia cells with minimal fratricide and exhaustion. Exp Hematol Oncol 2024; 13:67. [PMID: 38992654 PMCID: PMC11238396 DOI: 10.1186/s40164-024-00534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive and genetically heterogeneous disease with poor clinical outcomes. Refractory AML is common, and relapse remains a major challenge, attributable to the presence of therapy-resistant leukemic stem cells (LSCs), which possess self-renewal and repopulating capability. Targeting LSCs is currently the most promising avenue for long-term management of AML. Likewise, chimeric antigen receptor (CAR)-natural killer (NK) cells have emerged as a promising alternative to CAR-T cells due to their intrinsic potential as off-the-shelf products and safer clinical profiles. Here, we introduced a third-generation CAR harboring TIM3 scFv, CD28, 4-1BB, and CD3ζ (CAR-TIM3) into human NK-92 cells, the only FDA-approved NK cell line for clinical trials. TIM3 was chosen as a target antigen owing to its differential expression in LSCs and normal hematopoietic stem/progenitor cells (HSPCs). The established CAR-TIM3 NK-92 cells effectively targeted TIM3 and displayed potent anti-tumor activity against various primitive AML cells, subsequently causing a reduction in leukemic clonogenic growth in vitro, while having minimal effects on HSPCs. CAR-TIM3 NK-92 cells significantly reduced leukemic burden in vivo and interestingly suppressed the engraftment of AML cells into the mouse liver and bone marrow. Surprisingly, we found that CAR-TIM3 NK-92 cells expressed relatively low surface TIM3, leading to a low fratricidal effect. As TIM3 and PD-1 are immune checkpoints involved in NK cell dysfunction, we further tested and found that CAR-TIM3 NK-92 cells are beneficial for alleviating NK cell exhaustion. Our findings highlight the potential application of CAR-TIM3 NK cells for cellular immunotherapy for TIM3+ AML.
Collapse
Affiliation(s)
- Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Parinya Samart
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Nana CMM, Tchakounté BDK, Bitye BMZ, Fogang B, Zangue BKT, Seumko’o RMN, Nana BC, Leke RGF, Djontu JC, Argüello RJ, Ayong L, Megnekou R. Phenotypic changes of γδ T cells in Plasmodium falciparum placental malaria and pregnancy outcomes in women at delivery in Cameroon. Front Immunol 2024; 15:1385380. [PMID: 38827744 PMCID: PMC11140112 DOI: 10.3389/fimmu.2024.1385380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Depending on the microenvironment, γδ T cells may assume characteristics similar to those of Th1, Th2, Th17, regulatory T cells or antigen presenting cells. Despite the wide documentation of the effect of Th1/Th2 balance on pregnancy associated malaria and outcomes, there are no reports on the relationship between γδ T cell phenotype change and Placental Malaria (PM) with pregnancy outcomes. This study sought to investigate the involvement of γδ T cells and its subsets in placental Plasmodium falciparum malaria. Methods In a case-control study conducted in Yaoundé, Cameroon from March 2022 to May 2023, peripheral, placental and cord blood samples were collected from 50 women at delivery (29 PM negative: PM- and 21 PM positive: PM+; as diagnosed by light microscopy). Hemoglobin levels were measured using hemoglobinometer. PBMCs, IVBMCs and CBMCs were isolated using histopaque-1077 and used to characterize total γδ T cell populations and subsets (Vδ1+, Vδ2+, Vδ1-Vδ2-) by flow cytometry. Results Placental Plasmodium falciparum infection was associated with significant increase in the frequency of total γδ T cells in IVBMC and of the Vδ1+ subset in PBMC and IVBMC, but decreased frequency of the Vδ2+ subset in PBMC and IVBMC. The expression of the activation marker: HLA-DR, and the exhaustion markers (PD1 and TIM3) within total γδ T cells and subsets were significantly up-regulated in PM+ compared to PM- group. The frequency of total γδ T cells in IVBMC, TIM-3 expression within total γδ T cells and subsets in IVBMC, as well as HLA-DR expression within total γδ T cells and Vδ2+ subset in IVBMC were negatively associated with maternal hemoglobin levels. Furthermore, the frequency of total γδ T cells in PBMC and PD1 expression within the Vδ2+ subset in CBMC were negatively associated with birth weight contrary to the frequency of Vδ1-Vδ2- subset in PBMC and HLA-DR expression within the Vδ2+ subset in IVBMC which positively associated with maternal hemoglobin level and birth weight, respectively. Conclusion The data indicate up-regulation of activated and exhausted γδ T cells in Plasmodium falciparum placental malaria, with effects on pregnancy outcomes including maternal hemoglobin level and birth weight.
Collapse
MESH Headings
- Humans
- Female
- Pregnancy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/blood
- Cameroon
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Plasmodium falciparum/immunology
- Pregnancy Complications, Parasitic/immunology
- Case-Control Studies
- Pregnancy Outcome
- Young Adult
- Placenta/immunology
- Placenta/parasitology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Phenotype
Collapse
Affiliation(s)
- Chris Marco Mbianda Nana
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Bodin Darcisse Kwanou Tchakounté
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Bernard Marie Zambo Bitye
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Balotin Fogang
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Berenice Kenfack Tekougang Zangue
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Reine Medouen Ndeumou Seumko’o
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Benderli Christine Nana
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose Gana Fomban Leke
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Claude Djontu
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Rafael José Argüello
- CNRS, INSERM, CIML, Centre d’Immunologie de Marseille, Aix-Marseille University, Marseille, France
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Rosette Megnekou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Immunology Laboratory of the Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
4
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. Ther Adv Vaccines Immunother 2023; 11:25151355231192043. [PMID: 37662491 PMCID: PMC10469281 DOI: 10.1177/25151355231192043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Checkpoint markers and immune checkpoint inhibitors have been increasingly identified and developed as potential immunotherapeutic targets in various human cancers. Despite valuable efforts to discover novel immune checkpoints and their ligands, the precise roles of their therapeutic functions, as well as the broad identification of their counterpart receptors, remain to be addressed. In this context, it has been suggested that various putative checkpoint receptors can be induced upon activation. In the tumor microenvironment, T cells, as crucial immune response against malignant diseases as well as other immune central effector cells, such as natural killer cells, are regulated via co-stimulatory or co-inhibitory signals from immune or tumor cells. Studies have shown that exposure of T cells to tumor antigens upregulates the expression of inhibitory checkpoint receptors, leading to T-cell dysfunction or exhaustion. Although targeting immune checkpoint regulators has shown relative clinical efficacy in some tumor types, most trials in the field of cancer immunotherapies have revealed unsatisfactory results due to de novo or adaptive resistance in cancer patients. To overcome these obstacles, combinational therapies with newly discovered inhibitory molecules or combined blockage of several checkpoints provide a rationale for further research. Moreover, precise identification of their receptors counterparts at crucial checkpoints is likely to promise effective therapies. In this review, we examine the prospects for the application of newly emerging checkpoints, such as T-cell immunoglobulin and mucin domain 3, lymphocyte activation gene-3, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Ig suppressor of T-cell activation (VISTA), new B7 family proteins, and B- and T-cell lymphocyte attenuator, in association with immunotherapy of malignancies. In addition, their clinical and biological significance is discussed, including their expression in various human cancers, along with their roles in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Simin Dasht Industrial Area, Karaj, Iran
- CinnaGen Research and Production Co., Alborz 3165933155, Iran
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| |
Collapse
|
6
|
Mu X, Chen C, Dong L, Kang Z, Sun Z, Chen X, Zheng J, Zhang Y. Immunotherapy in leukaemia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:974-987. [PMID: 37272727 PMCID: PMC10326417 DOI: 10.3724/abbs.2023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Leukaemia is the common name for a group of malignant diseases of the haematopoietic system with complex classifications and characteristics. Remarkable progress has been made in basic research and preclinical studies for acute leukaemia compared to that of the many other types/subtypes of leukaemia, especially the exploration of the biological basis and application of immunotherapy in acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). In this review, we summarize the basic approaches to immunotherapy for leukaemia and focus on the research progress made in immunotherapy development for AML and ALL. Importantly, despite the advances made to date, big challenges still exist in the effectiveness of leukaemia immunotherapy, especially in AML. Therefore, we use AML as an example and summarize the mechanisms of tumour cell immune evasion, describe recently reported data and known therapeutic targets, and discuss the obstacles in finding suitable treatment targets and the results obtained in recent clinical trials for several types of single and combination immunotherapies, such as bispecific antibodies, cell therapies (CAR-T-cell treatment), and checkpoint blockade. Finally, we summarize novel immunotherapy strategies for treating lymphocytic leukaemia and clinical trial results.
Collapse
Affiliation(s)
- Xingmei Mu
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chumao Chen
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Loujie Dong
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhaowei Kang
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhixian Sun
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xijie Chen
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yaping Zhang
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
7
|
Wu Z, Ou J, Liu N, Wang Z, Chen J, Cai Z, Liu X, Yu X, Dai M, Zhou H. Upregulation of Tim‐3 is associated with poor prognosis in acute myeloid leukemia. Cancer Med 2022; 12:8956-8969. [PMID: 36545697 PMCID: PMC10134367 DOI: 10.1002/cam4.5549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy originated from leukemia stem cells (LSC). Emerging evidence suggests T-cell immunoglobulin mucin-3(Tim3) as surface marker for LSC. However, the clinical significance and biology of Tim-3 in AML remain to be determined, especially those LSCs. In public AML databases as well as our data, we separated AML patients into Tim-3high and Tim-3low subsets using the X-tile software and evaluated the associations between Tim-3 and overall survival (OS) and disease-free survival (DFS). The Cancer Genome Atlas (TCGA) cohort revealed that high Tim-3 expression in leukemic cells was linked with poor prognosis (DFS: p = 0.018; OS: p = 0.041). Furthermore, multiple regression analysis shows that Tim-3 was an independent factor for the prognosis (HR = 2.26, 95% CI = 1.15-4.44, p = 0.017). Validation cohort of public gene expression omnibus (GEO) confirmed that Tim-3 was a prognostic candidate in AML. Besides, in our internal cohort, we also confirmed that over expression of Tim-3 protein in LSC/LPC made poor prognosis in AML. Additionally, we revealed that the LSC markers AKR1C3, CD34, and MMRN1 were upregulated in the Tim-3high group of TCGA. We found that the upregulated genes in the Tim-3high group were mainly enriched in immune response, cytokine binding and cell adhesion molecules, and JAK-STAT signaling pathway, by gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Collectively, we revealed that, for the first time, upregulation of Tim-3 in LSCs at the level of gene and protein expression is associated with poor prognosis and the important biological feature of Tim-3 of LSC in AML.
Collapse
Affiliation(s)
- Zhengwei Wu
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jiawang Ou
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Nannan Liu
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Junjie Chen
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Min Dai
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
8
|
Kuželová K, Brodská B, Marková J, Petráčková M, Schetelig J, Ransdorfová Š, Gašová Z, Šálek C. NPM1 and DNMT3A mutations are associated with distinct blast immunophenotype in acute myeloid leukemia. Oncoimmunology 2022; 11:2073050. [PMID: 35558161 PMCID: PMC9090295 DOI: 10.1080/2162402x.2022.2073050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immune system is important for elimination of residual leukemic cells during acute myeloid leukemia (AML) therapy. Anti-leukemia immune response can be inhibited by various mechanisms leading to immune evasion and disease relapse. Selected markers of immune escape were analyzed on AML cells from leukapheresis at diagnosis (N = 53). Hierarchical clustering of AML immunophenotypes yielded distinct genetic clusters. In the absence of DNMT3A mutation, NPM1 mutation was associated with decreased HLA expression and low levels of other markers (CLIP, PD-L1, TIM-3). Analysis of an independent cohort confirmed decreased levels of HLA transcripts in patients with NPM1 mutation. Samples with combined NPM1 and DNMT3A mutations had high CLIP surface amount suggesting reduced antigen presentation. TIM-3 transcript correlated not only with TIM-3 surface protein but also with CLIP and PD-L1. In our cohort, high levels of TIM-3/PD-L1/CLIP were associated with lower survival. Our results suggest that AML genotype is related to blast immunophenotype, and that high TIM-3 transcript levels in AML blasts could be a marker of immune escape. Cellular pathways regulating resistance to the immune system might contribute to the predicted response to standard therapy of patients in specific AML subgroups and should be targeted to improve AML treatment.
Collapse
Affiliation(s)
- Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,CONTACT Kateřina Kuželová Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Petráčková
- Department of Gene Immunotherapy Research, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Johannes Schetelig
- Medical Clinic I, Division Hematology, Cell Therapy, and Medical Oncology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gašová
- Department of Apheresis, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Hong J, Xia L, Huang Z, Yuan X, Liang X, Dai J, Wu Z, Liang L, Ruan M, Long Z, Cheng X, Chen X, Ni J, Ge J, Li Q, Zeng Q, Xia R, Wang Y, Yang M. TIM-3 Expression Level on AML Blasts Correlates With Presence of Core Binding Factor Translocations Rather Than Clinical Outcomes. Front Oncol 2022; 12:879471. [PMID: 35494006 PMCID: PMC9046698 DOI: 10.3389/fonc.2022.879471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) expresses on leukemic stem and progenitor populations of non-M3 acute myeloid leukemia (AML) as well as T lymphocytes. TIM-3 is thought to be involved in the self-renewal of leukemic stem cells and the immune escape of AML cells, however its correlation with AML prognosis is still controversial and worthy of further investigation. Methods we simultaneously assessed TIM-3 expression levels of leukemic blasts and T lymphocytes in the bone marrow of de novo AML patients using flow cytometry. The correlations of TIM-3 expression between leukemic blasts and T lymphocytes and the correlations of TIM-3 expression with various patient parameters were analyzed. In addition, the Cancer Genome Atlas (TCGA) data of AML patients were acquired and analyzed to verify the results. Results TIM-3 expression of CD34+ leukemic blasts (R2 = 0.95, p<0.0001) and CD34+CD38- leukemic stem cells (R2 = 0.75, p<0.0001) were significantly and positively correlated with that of the whole population of leukemic blasts. In addition, TIM-3 expression level of leukemic blasts correlated significantly and positively with that of CD8+ (R2 = 0.44, p<0.0001) and CD4+ (R2 = 0.16, p=0.0181) lymphocytes, and higher TIM-3 expression of leukemic blasts was significantly associated with a greater proportion of peripheral CD8+ T lymphocytes (R2 = 0.24, p=0.0092), indicating that TIM-3 on leukemic blasts might alter adaptive immunity of AML patients. Regarding clinical data, the presence of core binding factor (CBF) translocations was significantly correlated with higher TIM-3 expression of leukemic blasts (CBF versus non-CBF, median 22.78% versus 1.28%, p=0.0012), while TIM-3 expression levels of leukemic blasts were not significantly associated with the remission status after induction chemotherapy (p=0.9799), overall survival (p=0.4201) or event-free survival (p=0.9873). Similar to our results, TCGA data showed that patients with CBF translocations had significantly higher mRNA expression level of HAVCR2 (the gene encoding TIM-3) (median, 9.81 versus 8.69, p<0.0001), and as all patients in the cohort were divided into two groups based on the median HAVCR2 expression level, 5-year overall survivals were not significantly different (low versus high, 24.95% versus 24.54%, p=0.6660). Conclusion TIM-3 expression level on AML blasts correlates with presence of CBF translocations rather than clinical outcomes.
Collapse
Affiliation(s)
- Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Leiming Xia
- Department of Hematology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaodong Yuan
- Division of Life Sciences and Medicine, Department of Organ Transplantation Center, Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
| | - Xinglin Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jifei Dai
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhonghui Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Liang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Ruan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Cheng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingshu Zeng
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Mingzhen Yang, ; Yi Wang,
| | - Mingzhen Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Hematology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Mingzhen Yang, ; Yi Wang,
| |
Collapse
|
10
|
Tettamanti S, Pievani A, Biondi A, Dotti G, Serafini M. Catch me if you can: how AML and its niche escape immunotherapy. Leukemia 2022; 36:13-22. [PMID: 34302116 PMCID: PMC8727297 DOI: 10.1038/s41375-021-01350-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
In spite of the remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML), the five-year survival rate of AML patients remains poor, highlighting the urgent need for novel and synergistic therapies. Over the past decade, increased attention has been focused on identifying suitable immunotherapeutic strategies for AML, and in particular on targeting leukemic cells and their progenitors. However, recent studies have also underlined the important contribution of the leukemic microenvironment in facilitating tumor escape mechanisms leading to disease recurrence. Here, we describe the immunological features of the AML niche, with particular attention to the crosstalk between the AML blasts and the cellular components of the altered tumor microenvironment (TME) and the mechanisms of immune escape that hamper the therapeutic effects of the most advanced treatments. Considering the AML complexity, immunotherapy approaches may benefit from a rational combination of complementary strategies aimed at preventing escape mechanisms without increasing toxicity.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Alice Pievani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy.
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marta Serafini
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione MBBM, Monza, Italy
| |
Collapse
|
11
|
Chen T, Chen F. The role of circular RNA plasmacytoma variant translocation 1 as a biomarker for prognostication of acute myeloid leukemia. Hematology 2021; 26:1018-1024. [PMID: 34871521 DOI: 10.1080/16078454.2021.1987649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Circular RNA plasmacytoma variant translocation 1 (circ-PVT1) has been reported to be an oncogene and serves as a prognostic biomarker in several solid cancers and hematological malignancies. However, no study has been performed on the tumorigenesis role of circ-PVT1 in acute myeloid leukemia (AML). Thus, this study aimed to evaluate the correlation of circ-PVT1 with disease risk, clinical characteristics, cytogenetics/molecular genetics, and prognosis of AML. METHODS A total of 68 de novo AML patients, 30 disease controls and 30 health donors were enrolled in this study. Circ-PVT1 expression in bone marrow (BM) was determined. Complete remission (CR) status after induction therapy, event-free survival (EFS) and overall survival (OS) were evaluated in AML patients. RESULTS Circ-PVT1 expression was different among AML patients, disease controls and health donors, which was highest in AML patients, followed by disease controls and lowest in health donors. Meanwhile, circ-PVT1 could distinguish AML patients from health donors and disease controls by receiver operating characteristic curve analysis. Furthermore, circ-PVT1 was correlated with BM blasts and FLT3-ITD mutation, but not other clinical features, such as French-American-Britain subtypes in AML patients. Moreover, circ-PVT1 expression was lower in AML patients with CR compared with those without CR. Besides, high circ-PVT1 expression was correlated with shorter EFS and OS in AML patients. After adjustment by multivariate Cox's regression analysis, higher circ-PVT1 expression was an independent factor in predicting shorter EFS and OS for AML patients. CONCLUSION Circ-PVT1 potentially serves as a biomarker for evaluating the prognosis of AML patients.
Collapse
Affiliation(s)
- Tao Chen
- Department of Hematology, Baoji Central Hospital, Baoji, Shaanxi Province, China
| | - Fengyun Chen
- Department of Hematology, Baoji Central Hospital, Baoji, Shaanxi Province, China
| |
Collapse
|
12
|
Radwan SM, Elleboudy NS, Nabih NA, El-kholy A, Kamal AM. The prospective prognostic value of the immune checkpoint BTLA expression in adult acute myeloid leukemia patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
One of the crucial functions of the immune system is to prevent tumorigenesis, yet cancer occurs when malignant cells manage to evade immune surveillance via multiple strategies. Accordingly, this study aimed at assessing the potential significance of the novel immune checkpoint B and T lymphocyte attenuator (BTLA) as a prognostic marker in acute myeloid leukemia (AML), in addition to how it relates to response to treatment and patients’ survival. Thus, mRNA expression of BTLA was investigated on peripheral blood in 60 AML patients and 15 healthy controls.
Results
BTLA expression was found to be significantly elevated (p = 0.024) in the tested AML cases in comparison with healthy controls. Moreover, BTLA was over-expressed in the CD13, CD33, and HLA-DR positive cases as compared to their negative counterparts (p = 0.003; p < 0.001, and p = 0.001, respectively), and cases showing BTLA over-expression had significantly poorer overall survival times (p = 0.001) as confirmed by Kaplan–Meier survival analysis.
Conclusion
These observations suggest that BTLA over-expression may be associated with reduced immunity against tumors and could be recommended as a promising biomarker for unfavorable prognosis in AML.
Collapse
|
13
|
Siglec-6 CAR T: magic bullet for a moving target. Blood 2021; 138:1786-1787. [PMID: 34762132 DOI: 10.1182/blood.2021013184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
|
14
|
Kamal AM, Wasfey EF, Elghamry WR, Sabry OM, Elghobary HA, Radwan SM. Genetic signature of CTLA-4, BTLA, TIM-3 and LAG-3 molecular expression in colorectal cancer patients: Implications in diagnosis and survival outcomes. Clin Biochem 2021; 96:13-18. [PMID: 34217699 DOI: 10.1016/j.clinbiochem.2021.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Accumulating evidences suggest that immune checkpoints (ICs) inhibit immune response against cancerous cells and promote tumor cell survival. Up-regulation of ICs in tumor microenvironment is reported in patients with colorectal cancer (CRC). Thus, evaluating the peripheral blood expression of ICs may be used as non-invasive biomarkers for diagnosis and prognosis of CRC. METHODS This study included 60 primary and treatment naïve CRC patients along with 15 age and sex matched healthy volunteers as a control group. Total RNA was extracted from peripheral blood samples and gene expression of cytotoxic T lymphocyte antigen-4 (CTLA-4), B and T lymphocyte attenuator (BTLA), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte activation gene-3 (LAG-3) was measured by quantitative real time polymerase chain reaction (qRT-PCR). All patients were followed for 12 months to correlate the measured ICs to patients' survival. RESULTS The gene expression of CTLA-4, BTLA, TIM-3 and LAG-3 was significantly up-regulated in CRC patients compared to the control group (p < 0.001). Individually, CTLA-4 and BTLA showed 85% sensitivity in discriminating CRC patients from control group (p < 0.001). On the other hand, TIM-3 and LAG-3 expression showed higher sensitivity (93%) for diagnosis of CRC (p < 0.001). Conversely, CTLA-4 or BTLA strongly predicted CRC patients' survival (p < 0.001) compared to TIM-3 (p = 0.018) or LAG-3 (p = 0.035). CTLA-4, BTLA, TIM-3 and LAG-3 were independent prognostic factors of survival after adjustment for age and gender. CONCLUSION The current study provided evidence that blood gene expression of ICs was up-regulated in CRC patients and associated with cancer stage and patients' survival, which highlights the diagnostic and prognostic values of ICs expression in CRC. Further investigations and validations in larger cohorts are required.
Collapse
Affiliation(s)
- Amany M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Wesam R Elghamry
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Omar M Sabry
- Hematology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Hany A Elghobary
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|