1
|
Wu X, Qiao T, Huang J, Li J, Wei S, Yang J, Zhang Y, Li Y. Rebaudioside B Attenuates Lung Ischemia-reperfusion Injury Associated Apoptosis and Inflammation. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:156-166. [PMID: 38584527 PMCID: PMC11475240 DOI: 10.2174/0127722708295154240327035857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE At present, no proven effective treatment is available for Lung Ischemiareperfusion Injury (LIRI). Natural compounds offer promising prospects for developing new drugs to address various diseases. This study sought to explore the potential of Rebaudioside B (Reb B) as a treatment compound for LIRI, both in vivo and in vitro. METHODS This study involved utilizing the human pulmonary alveolar cell line A549, consisting of epithelial type II cells, subjected to Oxygen-glucose Deprivation/recovery (OGD/R) for highthroughput in vitro cell viability screening. The aim was to identify the most promising candidate compounds. Additionally, an in vivo rat model of lung ischemia-reperfusion was employed to evaluate the potential protective effects of Reb B. RESULTS Through high-throughput screening, Reb B emerged as the most promising natural compound among those tested. In the A549 OGD/R models, Reb B exhibited a capacity to enhance cell viability by mitigating apoptosis. In the in vivo LIRI model, pre-treatment with Reb B notably decreased apoptotic cells, perivascular edema, and neutrophil infiltration within lung tissues. Furthermore, Reb B demonstrated its ability to attenuate lung inflammation associated with LIRI primarily by elevating IL-10 levels while reducing levels of IL-6, IL-8, and TNF-α. CONCLUSION The comprehensive outcomes strongly suggest Reb B's potential as a protective agent against LIRI. This effect is attributed to its inhibition of the mitochondrial apoptotic pathway and its ability to mitigate the inflammatory response.
Collapse
Affiliation(s)
- Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Qiao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian Huang
- Department of Thoracic Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC,University of Science and Technology of China, Hefei, China
| | - Jian Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jianbao Yang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanchun Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Govindasamy B, Muthu M, Gopal J, Chun S. A review on the impact of TRAIL on cancer signaling and targeting via phytochemicals for possible cancer therapy. Int J Biol Macromol 2023; 253:127162. [PMID: 37788732 DOI: 10.1016/j.ijbiomac.2023.127162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.
Collapse
Affiliation(s)
- Balasubramani Govindasamy
- Department of Product Development, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Sechul Chun
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Eupafolin regulates non-small-cell lung cancer cell proliferation, migration, and invasion by suppressing MMP9 and RhoA via FAK/PI3K/AKT signaling pathway. J Biosci 2023. [DOI: 10.1007/s12038-022-00323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
5
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
6
|
Hussain Y, Khan H, Alam W, Aschner M, Abdullah, Alsharif KF, Saso L. Flavonoids Targeting the mTOR Signaling Cascades in Cancer: A Potential Crosstalk in Anti-Breast Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4831833. [PMID: 35795855 PMCID: PMC9252758 DOI: 10.1155/2022/4831833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/04/2022] [Indexed: 12/19/2022]
Abstract
Cancer is one of the leading causes of death worldwide. Breast cancer is the second leading cause of death in women, with triple-negative breast cancer being the most lethal and aggressive form. Conventional therapies, such as radiation, surgery, hormonal, immune, gene, and chemotherapy, are widely used, but their therapeutic efficacy is limited due to adverse side effects, toxicities, resistance, recurrence, and therapeutic failure. Many molecules have been identified and investigated as potential therapeutic agents for breast cancer, with a focus on various signaling pathways. Flavonoids are a versatile class of phytochemicals that have been used in cancer treatment to overcome issues with traditional therapies. Cell proliferation, growth, apoptosis, autophagy, and survival are all controlled by mammalian target of rapamycin (mTOR) signaling. Flavonoids target mTOR signaling in breast cancer, and when this signaling pathway is regulated or deregulated, various signaling pathways provide potential therapeutic means. The role of various flavonoids as phytochemicals in targeting mTOR signaling pathways in breast cancer is highlighted in this review.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy
| |
Collapse
|
7
|
Jean WH, Huang CT, Hsu JH, Chiu KM, Lee MY, Shieh JS, Lin TY, Wang SJ. Anticonvulsive and Neuroprotective Effects of Eupafolin in Rats Are Associated with the Inhibition of Glutamate Overexcitation and Upregulation of the Wnt/β-Catenin Signaling Pathway. ACS Chem Neurosci 2022; 13:1594-1603. [PMID: 35500294 DOI: 10.1021/acschemneuro.2c00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several plant compounds have been found to possess neuroactive properties. The aim of this study was to investigate the anticonvulsant effect of eupafolin, a major active component extracted from Salvia plebeia, a herb used in traditional medicine for its anti-inflammatory properties. To this end, we assessed the anticonvulsant effects of eupafolin in rats intraperitoneally (i.p.) injected with kainic acid (KA) to elucidate this mechanism. Treatment with eupafolin (i.p.) for 30 min before KA administration significantly reduced behavioral and electrographic seizures induced by KA, similar to carbamazepine (i.p.), a widely used antiepileptic drug. Eupafolin treatment also significantly decreased KA seizure-induced neuronal cell death and glutamate elevation in the hippocampus. In addition, eupafolin notably reversed KA seizure-induced alterations in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR2, glutamate decarboxylase 67 (GAD67, GABAergic enzyme), and Wnt signaling-related proteins, including porcupine, Wnt1, phosphorylated-glycogen synthase kinase-3β, β-catenin, and Bcl-2 in the hippocampus. Furthermore, the increased level of Dickkopf-related protein 1 (Dkk-1, a Wnt signaling antagonist) and the decreased level of Disheveled1 (Dvl-1, a Wnt signaling activator) in the hippocampus of KA-treated rats were reversed by eupafolin. This study provides evidence of the anticonvulsant and neuroprotective properties of eupafolin and of the involvement of regulation of glutamate overexcitation and Wnt signaling in the mechanisms of these properties. These findings support the benefits of eupafolin in treating epilepsy.
Collapse
Affiliation(s)
- Wei-Horng Jean
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chih-Ta Huang
- Department of Neurosurgery, Cathay General Hospital, Taipei City 106, Taiwan
| | - Jung-Hsuan Hsu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Jiann-Shing Shieh
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
8
|
Wei J, Wang R, Lu Y, He S, Ding Y. Flotillin-1 promotes progression and dampens chemosensitivity to cisplatin in gastric cancer via ERK and AKT signaling pathways. Eur J Pharmacol 2022; 916:174631. [PMID: 34774850 DOI: 10.1016/j.ejphar.2021.174631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Several past studies have reported the overexpression of Flotillin-1 in a variety of cancer types. Cisplatin is a chemotherapeutic drug commonly used for cancer treatment. The present study investigated the role of Flotillin-1 in the progression of GC and assessed whether it assists in the chemical sensitization of GC cells toward cisplatin. METHOD The expression of Flotillin-1 was detected both in human gastric mucosal cells and GC cells. Next, siRNA and shRNA were used to construct a stable cell line expressing low levels of Flotillin-1. Furthermore, the Cell Counting Kit 8 (CCK-8), flow cytometry, and transwell assays were employed to detect the impact of Flotillin-1 on GC cells. In addition, a nude mouse model of human GC was used to verify the knockdown of Flotillin-1 to increase the sensitivity of GC cells to cisplatin. RESULTS Flotillin-1 was overexpressed in GC cells when compared to that in human gastric mucosal cells. The results for in vitro and vivo assays revealed that the knockdown of Flotillin-1 could significantly inhibit the proliferation of GC cells and increased the sensitivity of GC cells to cisplatin via the regulation of the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathway. CONCLUSION Flotillin-1 might be used as a molecular marker for GC diagnosis and could be explored as a potential new target for the treatment of GC.
Collapse
Affiliation(s)
- Jiahui Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ruiqing Wang
- The Eye Center in the Second Hospital of Jilin University, Ziqiang Street 218#, Nanguan District, Changchun City, Jilin, 130041, China
| | - Yiran Lu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|