1
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
2
|
Wen Y, Chen P, Wang Y, Lu C, Li C, Peng L, Cheng X, Guo Y, Quan J, Wen Y, Yang L. Integrative analysis and prognostication in gastric cancer: unveiling the role of mitochondrial genomics with the MLRScore model. Discov Oncol 2025; 16:470. [PMID: 40186721 PMCID: PMC11972275 DOI: 10.1007/s12672-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Gastric cancer, a leading cause of cancer-related mortality globally, presents significant challenges in prognosis and treatment due to its heterogeneity. This study aimed to elucidate the role of mitochondrial-related genes (MRGs) in gastric cancer and develop a prognostic model. We analyzed RNA sequencing data and clinical information of 412 gastric cancer samples from The Cancer Genome Atlas (TCGA). A comprehensive list of 1136 MRGs was curated from the MitoCarta3.0 database, leading to the identification of 110 differentially expressed MRGs between gastric cancer and normal tissues. Using univariate and multivariate Cox regression analyses, we constructed the Mitochondrial-Related Risk Score (MLRScore), a prognostic model incorporating five key MRGs. The model was validated in training and testing cohorts and exhibited promising prognostic capability. Additionally, we investigated the relationship between MLRScore and immune cell infiltration, somatic mutations, tumor mutation burden (TMB), and response to chemotherapy. The MLRScore was found to correlate with distinct immune landscapes and chemotherapeutic sensitivities, suggesting its potential utility in guiding personalized treatment strategies. Our study not only provides a novel tool for prognostic assessment in gastric cancer but also underscores the importance of mitochondrial dynamics in tumor biology and patient stratification.
Collapse
Affiliation(s)
- Yiru Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Peng Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yong Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyan Lu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Cao Li
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Liu Peng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xiaohong Cheng
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yulan Guo
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Jun Quan
- West China School of Nursing, Sichuan University, Chengdu, China
- Mental Health Center Word 3, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Wen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
- West China School of Nursing, Sichuan University, Chengdu, China.
| | - Lie Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Jiang Z, Gu Z, Lu X, Wen W. The role of dysregulated metabolism and associated genes in gastric cancer initiation and development. Transl Cancer Res 2024; 13:3854-3868. [PMID: 39145068 PMCID: PMC11319955 DOI: 10.21037/tcr-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
The review delves into the intricate interplay between metabolic dysregulation and the onset and progression of gastric cancer (GC), shedding light on a pivotal aspect of this prevalent malignancy. GC stands as one of the leading causes of cancer-related mortality worldwide, its trajectory influenced by a multitude of factors, among which metabolic dysregulation and aberrant gene expression play significant roles. The article navigates through the fundamental roles of metabolic dysregulation in the genesis of GC, unveiling phenomena such as aberrant glycolysis, epitomized by the Warburg effect, alongside anomalies in lipid and amino acid metabolism. It delineates how these disruptions fuel the cancerous process, facilitating uncontrolled cell proliferation and survival. Furthermore, the intricate nexus between metabolism and the vitality of GC cells is elucidated, underscoring the profound influence of metabolic reprogramming on tumor energy dynamics and the accrual of metabolic by-products, which further perpetuate malignant growth. A pivotal segment of the review entails an exploration of key metabolic-related genes implicated in GC pathogenesis. MYC and TP53 are spotlighted among others, delineating their pivotal roles in driving tumorigenesis through metabolic pathway modulation. These genetic pathways serve as critical nodes in the intricate network orchestrating GC development, providing valuable targets for therapeutic intervention. This review embarks on a forward-looking trajectory, delineating the potential therapeutic avenues stemming from insights into metabolic dysregulation in GC. It underscores the promise of targeted therapies directed towards specific metabolic pathways implicated in tumor progression, alongside the burgeoning potential of combination therapy strategies leveraging both metabolic and conventional anti-cancer modalities. In essence, this comprehensive review serves as a beacon, illuminating the intricate landscape of metabolic dysregulation in GC pathogenesis. Through its nuanced exploration of metabolic aberrations and their genetic underpinnings, it not only enriches our understanding of GC biology but also unveils novel therapeutic vistas poised to revolutionize its clinical management.
Collapse
Affiliation(s)
- Zhengyan Jiang
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| | - Zhengrong Gu
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| | - Xianyan Lu
- Digestive Department, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People’s Hospital), Suzhou, China
| | - Wei Wen
- Digestive Department, Jiangsu Second Chinese Medicine Hospital, Nanjing, China
| |
Collapse
|
4
|
Wang Y, Xu J, Fu Z, Zhang R, Zhu W, Zhao Q, Wang P, Hu C, Cheng X. The role of reactive oxygen species in gastric cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0182. [PMID: 38982978 DOI: 10.20892/j.issn.2095-3941.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ruolan Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Weiwei Zhu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Qianyu Zhao
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
5
|
Baumgartner V, Schaer D, Moch H, Salemi S, Eberli D. Mitochondrial Elongation and ROS-Mediated Apoptosis in Prostate Cancer Cells under Therapy with Apalutamide and Complex I Inhibitor. Int J Mol Sci 2024; 25:6939. [PMID: 39000047 PMCID: PMC11241170 DOI: 10.3390/ijms25136939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic reprogramming and mitochondrial dynamics are pivotal in prostate cancer (PCa) progression and treatment resistance, making them essential targets for therapeutic intervention. In this study, we investigated the effects of the androgen receptor antagonist apalutamide (ARN) and the mitochondrial electron transport chain complex I inhibitor IACS-010759 (IACS) on the mitochondrial network architecture and dynamics in PCa cells. Treatment with ARN and/or IACS induced significant changes in mitochondrial morphology, particularly elongation, in androgen-sensitive PCa cells. Additionally, ARN and IACS modulated the mitochondrial fission and fusion processes, indicating a convergence of metabolic and androgen-signaling pathways in shaping mitochondrial function. Notably, the combination treatment with ARN and IACS resulted in increased apoptotic cell death and mitochondrial oxidative stress selectively in the androgen-sensitive PCa cells. Our findings highlight the therapeutic potential of targeting mitochondrial metabolism in prostate cancer and emphasize the need for further mechanistic understanding to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Valentin Baumgartner
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Dominik Schaer
- Division of Internal Medicine, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Daniel Eberli
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Wagistrasse 21, 8952 Schlieren, Switzerland
| |
Collapse
|
6
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. The role of mitochondrial dynamics in the pathophysiology of endometriosis. J Obstet Gynaecol Res 2023; 49:2783-2791. [PMID: 37681703 DOI: 10.1111/jog.15791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
AIM Endometriosis is a chronic disease of reproductive age, associated with pelvic pain and infertility. Endometriotic cells adapt to changing environments such as oxidative stress and hypoxia in order to survive. However, the underlying mechanisms remain to be fully elucidated. In this review, we summarize our current understanding of the pathogenesis of endometriosis, focusing primarily on the molecular basis of energy metabolism, redox homeostasis, and mitochondrial function, and discuss perspectives on future research directions. METHODS Papers published up to March 31, 2023 in the PubMed and Google Scholar databases were included in this narrative literature review. RESULTS Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production and cellular redox homeostasis. Under hypoxia, endometriotic cells favor glycolysis and actively produce pyruvate, nicotinamide adenine dinucleotide phosphate (NADPH), and other metabolites for cell proliferation. Mitochondrial fission and fusion dynamics may regulate the phenotypic plasticity of cellular energy metabolism, that is, aerobic glycolysis or OXPHOS. Endometriotic cells have been reported to have reduced mitochondrial numbers, increased lamellar cristae, improved energy efficiency, and enhanced cell proliferation and survival. Increased mitochondrial fission and fusion turnover by hypoxic and normoxic conditions suggests an activation of mitochondrial quality control mechanisms. Recently, candidate molecules that influence mitochondrial dynamics have begun to be identified. CONCLUSION This review suggests that unique energy metabolism and redox homeostasis driven by mitochondrial dynamics may be linked to the pathophysiology of endometriosis. However, further studies are needed to elucidate the regulatory mechanisms of mitochondrial dynamics in endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
7
|
Li G, Fu Q, Liu C, Peng Y, Gong J, Li S, Huang Y, Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front Oncol 2022; 12:1074307. [PMID: 36561529 PMCID: PMC9763625 DOI: 10.3389/fonc.2022.1074307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosinen (m6A) methylation is a frequent RNA methylation modification that is regulated by three proteins: "writers", "erasers", and "readers". The m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Interestingly, recent research has linked m6A RNA modification to the occurrence and development of cancers, such as hepatocellular carcinoma and non-small cell lung cancer. This review summarizes the regulatory role of m6A RNA modification in gastric cancer (GC), including targets, the mechanisms of action, and the potential signaling pathways. Our present findings can facilitate our understanding of the significance of m6A RNA modification in GC.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qiru Fu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cong Liu
- Editorial Department of Journal of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuxi Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Shilan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yan Huang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| |
Collapse
|
8
|
Zheng H, Wang Z, Li Q, Zhao Y, Liu Y, Chen A, Deng J, Su G. Comprehensive safety profile evaluation of bivalirudin in Chinese ST-segment elevation myocardial infarction patients receiving percutaneous coronary intervention: a prospective, multicenter, intensive monitoring study. BMC Cardiovasc Disord 2022; 22:290. [PMID: 35752771 PMCID: PMC9233771 DOI: 10.1186/s12872-022-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background This prospective, multi-center, intensive monitoring study aimed to systematically assess the occurrence of adverse events (AEs) and adverse drug reactions (ADRs), especially thrombocytopenia and bleeding, as well as their risk factors in Chinese ST-segment elevation myocardial infraction (STEMI) patients receiving bivalirudin as anticoagulant for percutaneous coronary intervention (PCI). Methods In total, 1244 STEMI patients undergoing PCI and receiving bivalirudin as anticoagulant were enrolled in the present study. Safety data were collected from hospital admission to 72 h after bivalirudin administration; in addition, patients were further followed up at the 30th day with safety data collected at that time. Results AEs, severe AEs, ADRs and severe ADRs were reported in 224 (18.0%), 15 (1.2%), 49 (3.9%) and 5 (0.4%) patients, respectively. Importantly, 4 (0.3%) patients were submitted to hospitalization and 6 (0.5%) patients died due to AEs, while 1 (0.1%) patient was submitted to hospitalization but no (0.0%) patient died due to ADRs. Meanwhile, thrombocytopenia and bleeding occurred in 24 (1.9%) and 21 (1.7%) patients, respectively. Further multivariate logistic analysis identified several important independent factors related to AEs, ADRs, thrombocytopenia or bleeding, which included history of cardiac surgery and renal function impairment, high CRUSADE risk stratification, elective operation and combination with glycoprotein IIb/IIIa inhibitors. Moreover, 4 multivariate models were constructed based on the above-mentioned factors, which all showed acceptable predictive value for AEs, ADRs, thrombocytopenia and bleeding, respectively. Conclusion Bivalirudin is a well-tolerant anticoagulant in Chinese STEMI patients undergoing PCI procedure. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02716-4.
Collapse
Affiliation(s)
- Haijun Zheng
- Department of Cardiology, Jiaozuo People's Hospital, Jiaozuo, China
| | - Zhonghua Wang
- Department of Cardiology, Chenzhou First People's Hospital, Chenzhou, China
| | - Qi Li
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Aiming Chen
- Department of Cardiology, The First People's Hospital of Jinzhou District, Dalian, China
| | - Jianping Deng
- Department of Cardiology, Nanchong Central Hospital, No. 97, Renmin South Road, Shunqing District, Nanchong, 637000, China.
| | - Guohai Su
- Department of Cardiology, Jinan Clinical Medical College, Jinan Central Hospital, Shan-Dong University, No. 105 Jiefang Road, Jinan, 250000, Jinan, China.
| |
Collapse
|
9
|
Safaei S, Sajed R, Saeednejad Zanjani L, Rahimi M, Fattahi F, Ensieh Kazemi-Sefat G, Razmi M, Dorafshan S, Eini L, Madjd Z, Ghods R. Overexpression of cytoplasmic dynamin 2 is associated with worse outcomes in patients with clear cell renal cell carcinoma. Cancer Biomark 2022; 35:27-45. [PMID: 35662107 DOI: 10.3233/cbm-210514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Dynamin 2 (DNM2) involved in tumor progression in various malignancies. OBJECTIVE: For the first time, we evaluated DNM2 expression pattern, its association with clinicopathological characteristics and survival outcomes in RCC subtypes. METHODS: We evaluated the DNM2 expression pattern in RCC tissues as well as adjacent normal tissue using immunohistochemistry on tissue microarray (TMA) slides. RESULTS: Our findings revealed increased DNM2 expression in RCC samples rather than in adjacent normal tissues. The results indicated that there was a statistically significant difference between cytoplasmic expression of DNM2 among subtypes of RCC in terms of intensity of staining, percentage of positive tumor cells, and H-score (P= 0.024, 0.049, and 0.009, respectively). The analysis revealed that increased cytoplasmic expression of DNM2 in ccRCC is associated with worse OS (log rank: P= 0.045), DSS (P= 0.049), and PFS (P= 0.041). Furthermore, cytoplasmic expression of DNM2 was found as an independent prognostic factor affecting DSS and PFS in multivariate analysis. CONCLUSIONS: Our results indicated that DNM2 cytoplasmic expression is associated with tumor aggressiveness and poor outcomes. DNM2 could serve as a promising prognostic biomarker and therapeutic target in patients with ccRCC.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
10
|
Metabolic Reprogramming in Response to Alterations of Mitochondrial DNA and Mitochondrial Dysfunction in Gastric Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23031857. [PMID: 35163779 PMCID: PMC8836428 DOI: 10.3390/ijms23031857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
We used gastric cancer cell line AGS and clinical samples to investigate the roles of mitochondrial DNA (mtDNA) alterations and mitochondrial respiratory dysfunction in gastric adenocarcinoma (GAC). A total of 131 clinical samples, including 17 normal gastric mucosa (N-GM) from overweight patients who had received sleeve gastrectomy and 57 paired non-cancerous gastric mucosae (NC-GM) and GAC from GAC patients who had undergone partial/subtotal/total gastrectomy, were recruited to examine the copy number and D310 sequences of mtDNA. The gastric cancer cell line AGS was used with knockdown (KD) mitochondrial transcription factor A (TFAM) to achieve mitochondrial dysfunction through a decrease of mtDNA copy number. Parental (PT), null-target (NT), and TFAM-KD-(A/B/C) represented the parental, control, and TFAM knocked-down AGS cells, respectively. These cells were used to compare the parameters reflecting mitochondrial biogenesis, glycolysis, and cell migration activity. The median mtDNA copy numbers of 17 N-GM, 57 NC-GM, and 57 GAC were 0.058, 0.055, and 0.045, respectively. The trend of decrease was significant (p = 0.030). In addition, GAC had a lower mean mtDNA copy number of 0.055 as compared with the paired NC-GM of 0.078 (p < 0.001). The mean mtDNA copy number ratio (mtDNA copy number of GAC/mtDNA copy number of paired NC-GM) was 0.891. A total of 35 (61.4%) GAC samples had an mtDNA copy number ratio ≤0.804 (p = 0.017) and 27 (47.4%) harbored a D310 mutation (p = 0.047), and these patients had shorter survival time and poorer prognosis. After effective knockdown of TFAM, TFAM-KD-B/C cells expressed higher levels of hexokinase II (HK-II) and v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT, but lower levels of phosphorylated pyruvate dehydrogenase (p-PDH) than did the NT/PT AGS cells. Except for a higher level of p-PDH, the expression levels of these proteins remained unchanged in TFAM-KD-A, which had a mild knockdown of TFAM. Compared to those of NT, TFAM-KD-C had not only a lower mtDNA copy number (p = 0.050), but also lower oxygen consumption rates (OCR), including basal respiration (OCRBR), ATP-coupled respiration (OCRATP), reserve capacity (OCRRC), and proton leak (OCRPL)(all with p = 0.050). In contrast, TFAM-KD-C expressed a higher extracellular acidification rate (ECAR)/OCRBR ratio (p = 0.050) and a faster wound healing migration at 6, 12, and 18 h, respectively (all with p = 0.050). Beyond a threshold, the decrease in mtDNA copy number, the mtDNA D310 mutation, and mitochondrial dysfunction were involved in the carcinogenesis and progression of GACs. Activation of PDH might be considered as compensation for the mitochondrial dysfunction in response to glucose metabolic reprogramming or to adjust mitochondrial plasticity in GAC.
Collapse
|
11
|
Deng T, Jiang X, He Z, Cai M, Chen C, Xu Z. Centromere protein U (CENPU) promotes gastric cancer cell proliferation and glycolysis by regulating high mobility group box 2 (HMGB2). Bioengineered 2021; 12:10194-10202. [PMID: 34872447 PMCID: PMC8810026 DOI: 10.1080/21655979.2021.2002018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer is one of the most common malignancy with a leading mortality rate worldwide. Despite the progress in the diagnosis and therapeutic strategy, the associated mortality is still growing. It is of great significance to understand molecular mechanisms of the development of gastric cancer. Glycolysis is a main source of ATP provision for cancer cells including gastric cancer, and targeting glycolysis is a promising therapeutic strategy. Centromere protein U (CENPU) has been found to be overexpressed in many types of cancer. Downregulation of CENPU suppresses the proliferation and invasion of cancer cells. High mobility group box 2 (HMGB2) is identified as a biomarker to diagnose of gastric cancer. Knockdown of HMGB2 inhibits proliferation and glycolysis in gastric cancer cells. In this work, we identified that CENPU was upregulated in gastric cancer. Knockdown of CENPU was able to suppress the proliferation and glycolysis of gastric cancer cells. Further the results showed that the anti-cancer effect of CENPU was HMGB2-dependent. Taken together, CENPU is an upstream factor of HMGB2, which regulates proliferation and glycolysis of gastric cancer.
Collapse
Affiliation(s)
- Taozhi Deng
- Department of Gastroenterology, Hainan Cancer Hospital, Haikou, Hainan Province, China
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zhoutao He
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Manni Cai
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Chaochao Chen
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zewen Xu
- Department of Gastroenterology, Hainan General Hospital, Haikou, Hainan Province, China
| |
Collapse
|
12
|
Yang H, Wei B, Hu B. Chronic inflammation and long-lasting changes in the gastric mucosa after Helicobacter pylori infection involved in gastric cancer. Inflamm Res 2021; 70:1015-1026. [PMID: 34549319 DOI: 10.1007/s00011-021-01501-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Helicobacter pylori (H. pylori) infects approximately half of the world's population, as one of the most common chronic infections. H. pylori infection has been widely recognized as a major risk factor for gastric cancer (GC). METHODS Eradication treatment is considered to abolish the inflammatory response and prevent progression to GC. However, only 1-3% of H. pylori-infected patients develop GC, whereas GC can occur even after eradicating H. pylori. In addition, the incidence of GC following H. pylori infection is significantly higher compared to the gross incidence induced by all causes, although eradicating H. pylori reduces the risk of developing GC. RESULTS Therefore, it is reasonable to hypothesize that H. pylori infection results in changes that persist even after its eradication. Several of these changes may not be reversible within a short time, including the status of inflammation, the dysfunction of immunity and apoptosis, mitochondrial changes, aging and gastric dysbacteriosis. CONCLUSION The present review article aimed to discuss these potential long-lasting changes induced by H. pylori infection that may follow the eradication of H. pylori and contribute to the development of GC.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bin Wei
- Department of Gastroenterology, The First Hospital of Xi'an City, Xi'an, 710002, Shanxi, People's Republic of China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Shen W, Wang G, Cooper GR, Jiang Y, Zhou X. The Epithelial and Stromal Immune Microenvironment in Gastric Cancer: A Comprehensive Analysis Reveals Prognostic Factors with Digital Cytometry. Cancers (Basel) 2021; 13:cancers13215382. [PMID: 34771544 PMCID: PMC8582557 DOI: 10.3390/cancers13215382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Tumor heterogeneity continues to confound researchers' understanding of tumor growth and the development of an effective therapy. Digital cytometry allows interpretation of heterogeneous bulk tissue transcriptomes at the cellular level. We built a novel signature matrix to dissect epithelium and stroma signals using a scRNA-seq data set (GSE134520) for GC and then applied cell mixture deconvolution to estimate diverse epithelial, stromal, and immune cell proportions from bulk transcriptome data in four independent GC cohorts (GSE62254, GSE15459, GSE84437, and TCGA-STAD) from the GEO and TCGA databases. Robust computational methods were applied to identify strong prognostic factors for GC. We identified an EMEC population whose proportions were significantly higher in patients with stage I cancer than other stages, and it was predominantly present in tumor samples but not typically found in normal samples. We found that the ratio of EMECs to stromal cells and the ratio of adaptive T cells to monocytes were the most significant prognostic factors within the non-immune and immune factors, respectively. The STEM score, which unifies these two prognostic factors, was an independent prognostic factor of overall survival (HR = 0.92, 95% CI = 0.89-0.94, p=2.05×10-9). The entire GC cohort was stratified into three risk groups (high-, moderate-, and low-risk), which yielded incremental survival times (p<0.0001). For stage III disease, patients in the moderate- and low-risk groups experienced better survival benefits from radiation therapy ((HR = 0.16, 95% CI = 0.06-0.4, p<0.0001), whereas those in the high-risk group did not (HR = 0.49, 95% CI = 0.14-1.72, p=0.25). We concluded that the STEM score is a promising prognostic factor for gastric cancer.
Collapse
Affiliation(s)
- Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA 94035, USA
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, China
- Correspondence: (W.S.); (Y.J.)
| | - Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China;
| | - Georgia R. Cooper
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Correspondence: (W.S.); (Y.J.)
| | - Xin Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (G.R.C.); (X.Z.)
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|