1
|
Akhlaghipour I, Moghbeli M. MicroRNA-98 as a novel diagnostic marker and therapeutic target in cancer patients. Discov Oncol 2024; 15:385. [PMID: 39210158 PMCID: PMC11362465 DOI: 10.1007/s12672-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The progress of cancer treatment methods in the last decade has significantly reduced mortality rate among these patients. Nevertheless, cancer is still recognized as one of the main causes of human deaths. One of the main reasons for the high death rate in cancer patients is the late diagnosis in the advanced tumor stages. Therefore, it is necessary to investigate the molecular biology of tumor progressions in order to introduce early diagnostic markers. MicroRNAs (miRNAs) have an important role in regulating cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, they are widely used as non-invasive markers in the early tumor diagnosis. Since, deregulation of miR-98 has been reported in a wide range of cancers, we investigated the molecular mechanisms of miR-98 during tumor progression. It has been reported that miR-98 mainly inhibits the tumor growth by the modulation of transcription factors and signaling pathways. Therefore, miR-98 can be introduced as a tumor marker and therapeutic target among cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Yang Y, Yuan Q, Tang W, Ma Y, Duan J, Yang G, Fang Y. Role of long non-coding RNA in chemoradiotherapy resistance of nasopharyngeal carcinoma. Front Oncol 2024; 14:1346413. [PMID: 38487724 PMCID: PMC10937456 DOI: 10.3389/fonc.2024.1346413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelial cells. Common treatment methods for NPC include radiotherapy, chemotherapy, and surgical intervention. Despite these approaches, the prognosis for NPC remains poor due to treatment resistance and recurrence. Hence, there is a crucial need for more comprehensive research into the mechanisms underlying treatment resistance in NPC. Long non coding RNAs (LncRNAs) are elongated RNA molecules that do not encode proteins. They paly significant roles in various biological processes within tumors, such as chemotherapy resistance, radiation resistance, and tumor recurrence. Recent studies have increasingly unveiled the mechanisms through which LncRNAs contribute to treatment resistance in NPC. Consequently, LncRNAs hold promise as potential biomarkers and therapeutic targets for diagnosing NPC. This review provides an overview of the role of LncRNAs in NPC treatment resistance and explores their potential as therapeutic targets for managing NPC.
Collapse
Affiliation(s)
- Yang Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - QuPing Yuan
- Puer People’s Hospital, Department of Critical Medicine, PuEr, Yunnan, China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Ya Ma
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - JingYan Duan
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - GuoNing Yang
- Otorhinolaryngology Head and Neck Surgery, Baoshan People’s Hospital, Baoshan, Yunnan, China
| | - Yuan Fang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Wu J, Gong P, Jiang Z. Knockdown of hsa_circ_0043691 restrains the progression of gastric cancer by decoying
miR
‐1294 to target pre‐leukemia transcription factor 3. J Clin Lab Anal 2022; 36:e24733. [DOI: 10.1002/jcla.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing Wu
- Department of Gastroenterology Fuyong People's Hospital Shenzhen China
| | - Pan Gong
- Department of Abdominal tumour surgery Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huangshi China
| | - Zhiyong Jiang
- Department of Medical Imaging Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
6
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
7
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial–mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal–epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
- *Correspondence: Mercedes Bermúdez,
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
8
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
9
|
Shen N, Duan X, Feng Y, Zhang J, Qiao X, Ding W. Long non-coding RNA HOXA11 antisense RNA upregulates spermatogenesis-associated serine-rich 2-like to enhance cisplatin resistance in laryngeal squamous cell carcinoma by suppressing microRNA-518a. Bioengineered 2022; 13:974-984. [PMID: 34974809 PMCID: PMC8805888 DOI: 10.1080/21655979.2021.2016038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are closely associated with the chemoresistance of laryngeal squamous cell carcinoma (LSCC). Previous studies indicated that HOXA11-AS could function as a vital regulator in human cancers. However, the regulatory mechanisms of HOXA11-AS in the chemoresistance of LSCC remain unclear. In this study, it was found that HOXA11-AS expression was upregulated in cisplatin (CDDP)-resistant LSCC tissues and cells. Loss-of-function assays revealed that HOXA11-AS knockdown inhibited the viability, migration, and invasion, but promoted the apoptosis of CDDP-resistant LSCC cells. Meanwhile, we identified miR-518a as a downstream gene of HOXA11-AS in LSCC, and miR-518a silencing reversed the promotive effect of HOXA11-AS knockdown on CDDP sensitivity of LSCC cells. In addition, miR-518a could inhibit spermatogenesis-associated serine-rich 2-like (SPATS2L) expression by direct interaction, and upregulation of SPATS2L abrogated the inhibitory effect of HOXA11-AS silencing or miR-518a overexpression on CDDP resistance of CDDP-resistant LSCC cells. In sum, our results demonstrated that HOXA11-AS enhanced CDDP resistance of LSCC via miR-518a/SPATS2L axis, which might offer novel therapeutic strategies for CDDP-resistant LSCC.
Collapse
Affiliation(s)
- Na Shen
- The Department of Otolaryngology Head and Neck Surgery, Tianjin Children’s Hospital, Tianjin, China
| | - Xiaohui Duan
- The Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Yong Feng
- The Department of Otolaryngology Head and Neck Surgery, The 4th Central Hospital of Tianjin, Tianjin, China
| | - Jianxin Zhang
- The Department of Otolaryngology Head and Neck Surgery, The 4th Central Hospital of Tianjin, Tianjin, China
| | - Xiaocheng Qiao
- The Department of Otolaryngology Head and Neck Surgery, The 4th Central Hospital of Tianjin, Tianjin, China
| | - Wenyu Ding
- The Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| |
Collapse
|
10
|
Liguori G, Cerrone M, De Chiara A, Tafuto S, de Bellis MT, Botti G, Di Bonito M, Cantile M. The Role of lncRNAs in Rare Tumors with a Focus on HOX Transcript Antisense RNA ( HOTAIR). Int J Mol Sci 2021; 22:ijms221810160. [PMID: 34576322 PMCID: PMC8466298 DOI: 10.3390/ijms221810160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rare cancers are identified as those with an annual incidence of fewer than 6 per 100,000 persons and includes both epithelial and stromal tumors from different anatomical areas. The advancement of analytical methods has produced an accurate molecular characterization of most human cancers, suggesting a “molecular classification” that has allowed the establishment of increasingly personalized therapeutic strategies. However, the limited availability of rare cancer samples has resulted in very few therapeutic options for these tumors, often leading to poor prognosis. Long non coding RNAs (lncRNAs) are a class of non-coding RNAs mostly involved in tumor progression and drug response. In particular, the lncRNA HOX transcript antisense RNA (HOTAIR) represents an emergent diagnostic, prognostic and predictive biomarker in many human cancers. The aim of this review is to highlight the role of HOTAIR in rare cancers, proposing it as a new biomarker usable in the management of these tumors.
Collapse
Affiliation(s)
- Giuseppina Liguori
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Maura Tracey de Bellis
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
- Correspondence: ; Tel.: +39-08159031755; Fax: +39-0815903718
| |
Collapse
|