1
|
Wang S, Wu J, Zhao W, Li M, Li S. CEBPB upregulates P4HA2 to promote the malignant biological behavior in IDH1 wildtype glioma. FASEB J 2023; 37:e22848. [PMID: 36906285 DOI: 10.1096/fj.202201244rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/13/2023]
Abstract
Temozolomide (TMZ), the primary drug for glioma treatment, has limited treatment efficacy. Additionally, considerable evidence shows that isocitrate dehydrogenase 1 mutation-type (IDH1 mut) gliomas have a better response to TMZ than isocitrate dehydrogenase 1 wildtype (IDH1 wt) gliomas. Here, we aimed to identify potential mechanisms underlying this phenotype. Herein, the Cancer Genome Atlas bioinformatic data and 30 clinical samples from patients were analyzed to reveal the expression level of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT) Enhancer Binding Protein Beta (CEBPB) and prolyl 4-hydroxylase subunit alpha 2 (P4HA2) in gliomas. Next, cellular and animal experiments, including cell proliferation, colony formation, transwell, CCK-8, and xenograft assays, were performed to explore the tumor-promoting effects of P4HA2 and CEBPB. Then, chromatin immunoprecipitation (ChIP) assays were used to confirm the regulatory relationships between them. Finally, a co-immunoprecipitation (Co-IP) assay was performed to confirm the effect of IDH1-132H to CEBPB proteins. We found that CEBPB and P4HA2 expression was significantly upregulated in IDH1 wt gliomas and associated with poor prognosis. CEBPB knockdown inhibited the proliferation, migration, invasion, and temozolomide resistance of glioma cells and hindered the growth of glioma xenograft tumors. CEBPE, as a transcription factor, exerted its function by transcriptionally upregulating P4HA2 expression in glioma cells. Importantly, CEBPB is prone to ubiquitin-proteasomal degradation in IDH1 R132H glioma cells. We also demonstrated that both genes are related to collagen synthesis, as confirmed by in vivo experiments. Thus, CEBPE promotes proliferation and TMZ resistance by inducing P4HA2 expression in glioma cells and offers a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Jingheng Wu
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Wujun Zhao
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China.,Department of Neurosurgery of the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miaomiao Li
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Shaoyi Li
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Zhang L, Zhang X, Ji R, Ji Y, Wu Y, Ding X, Shang Z, Liu X, Li W, Guo J, Wang J, Cheng X, Qin J, Tian M, Jin G, Zhang X. Lama2 And Samsn1 Mediate the Effects of Brn4 on Hippocampal Neural Stem Cell Proliferation and Differentiation. Stem Cells Int 2023; 2023:7284986. [PMID: 37091532 PMCID: PMC10118897 DOI: 10.1155/2023/7284986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The transcription factor Brn4 exhibits vital roles in the embryonic development of the neural tube, inner ear, pancreas islet, and neural stem cell differentiation. Our previous studies have shown that Brn4 promotes neuronal differentiation of hippocampal neural stem cells (NSCs). However, its mechanism is still unclear. Here, starting from the overlapping genes between RNA-seq and ChIP-seq results, we explored the downstream target genes that mediate Brn4-induced hippocampal neurogenesis. There were 16 genes at the intersection of RNA-seq and ChIP-seq, among which the Lama2 and Samsn1 levels can be upregulated by Brn4, and the combination between their promoters and Brn4 was further determined using ChIP and dual luciferase reporter gene assays. EdU incorporation, cell cycle analysis, and CCK-8 assay indicated that Lama2 and Samsn1 mediated the inhibitory effect of Brn4 on the proliferation of hippocampal NSCs. Immunofluorescence staining, RT-qPCR, and Western blot suggested that Lama2 and Samsn1 mediated the promoting effect of Brn4 on the differentiation of hippocampal NSCs into neurons. In conclusion, our study demonstrates that Brn4 binds to the promoters of Lama2 and Samsn1, and they partially mediate the regulation of Brn4 on the proliferation inhibition and neuronal differentiation promotion of hippocampal NSCs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xunrui Zhang
- Faculty of Medicine, Xinglin College, Nantong University, Nantong, China
| | - Ruijie Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaya Ji
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuhang Wu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiuyu Ding
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhiying Shang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xueyuan Liu
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jingjing Guo
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jue Wang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianbing Qin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meiling Tian
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guohua Jin
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Central Lab, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224002, China
| |
Collapse
|
3
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
4
|
Xie S, Ding B, Wang S, Zhang X, Yan W, Xia Q, Meng D, Shen S, Yu B, Liu H, Hu J, Wang S. Construction of hypoxia-immune-related prognostic model and targeted therapeutic strategies for cervical cancer. Int Immunol 2022; 34:379-394. [PMID: 35561666 DOI: 10.1093/intimm/dxac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicates that hypoxia and immunity play important roles in tumorigenesis and development. However, the hypoxia-immune-related prognostic risk model has not been established in cervical cancer (CC). We aimed to construct a hypoxia-immune-based prognostic risk model with potential application in CC patient prognosis and predicting response to targeted therapy. The RNA-seq data and corresponding clinical information were retrieved from The Cancer Genome Atlas (TCGA) database. Hypoxia and immune status of CC patients were evaluated using the Consensus Clustering method and single sample gene set enrichment analysis (ssGSEA), respectively. The univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were applied to establish the prognostic risk model of CC. The chemotherapy response for six chemotherapeutic agents of each CC patient was calculated according to the Genomics of Drug Sensitivity in Cancer (GDSC). And the Connectivity Map (CMap) database was performed to screen candidate small molecule drugs. In this study, we identified 7 gene signatures (P4HA2, MSMO1, EGLN1, ZNF316, IKZF3, ISCU, MYO1B) with prognostic values. And the survival time of patients with low-risk was significantly longer than those with high-risk. Meanwhile, CC patients in the high-risk group yielded higher sensitivity to five chemotherapeutic agents. And we listed ten candidate small-molecules drugs that exhibited a high correlation with the prognosis of cervical cancer. Thus, the prognostic model can accurately predict the prognosis of patients with CC and may be helpful for the development of new hypoxia-immune prognostic markers and therapeutic strategies for CC.
Collapse
Affiliation(s)
- Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
6
|
Gu S, Peng Z, Wu Y, Wang Y, Lei D, Jiang X, Zhao H, Fu P. COL5A1 Serves as a Biomarker of Tumor Progression and Poor Prognosis and May Be a Potential Therapeutic Target in Gliomas. Front Oncol 2021; 11:752694. [PMID: 34868960 PMCID: PMC8635112 DOI: 10.3389/fonc.2021.752694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 01/19/2023] Open
Abstract
Glioma is the most common malignancy of the central nervous system. Although advances in surgical resection, adjuvant radiotherapy, and chemotherapy have been achieved in the last decades, the prognosis of gliomas is still dismal. COL5A1 is one of the collagen members with minor content but prominent functions. The present study examined the biological functions, prognostic value, and gene-associated tumor-infiltrating immune cells of COL5A1 through experiments and bioinformatics analysis. We found that the overexpression of COL5A1 was positively correlated with the increasing tumor malignancies and indicated poor prognosis in gliomas. Moreover, downregulation of COL5A1 could inhibit proliferation and migration of glioma cells and enhance their temozolomide sensitivities in vitro. Further bioinformatic analysis revealed that COL5A1 and its co-expressed genes participated in a number of pathways and biological processes involved in glioma progression. Finally, we evaluated the tumor-infiltrating immune cells of gliomas depending on COL5A1 and found that the percentages of the dendritic cells, which were known as the central mediator of tumor microenvironment in gliomas, were positively associated with the expression levels of COL5A1. Taken together, COL5A1 is an important biomarker and potential therapeutic target of gliomas.
Collapse
Affiliation(s)
- Sujie Gu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery General Hospital of The Yangtze River Shipping, Wuhan, China
| | - Yuxi Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|