1
|
Liu X, Guo H, Kang M, Fu W, Li H, Ji H, Zhao J, Fang Y, Du M, Xue Y. Multi-step gene set analysis identified HTR3 family genes involving childhood acute lymphoblastic leukemia susceptibility. Arch Toxicol 2024:10.1007/s00204-024-03881-5. [PMID: 39322821 DOI: 10.1007/s00204-024-03881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In our previous conventional genome-wide association study (GWAS), WWOX was a susceptibility gene associated with acute lymphoblastic leukemia (ALL) development. Nowadays, advancements in genetic association analyses promote an in-depth exploration of ALL genomics. We conducted a two-step enrichment analysis at both gene and pathway levels based on ALL GWAS data including 269 cases and 1039 controls of Chinese descent. The following functional prediction and experiments were used to evaluate the genetic biology of candidate variants and genes. The serotonin-activated cation-selective channel complex gene-set was a potential biological pathway involved in ALL occurrence. Of which, individuals carrying the T allele of rs33940208 exhibited a prominent reduced risk of ALL [odds ratio (OR) = 0.71, 95% confidence interval (CI) = 0.53 to 0.96, P = 2.81 × 10-2], whereas those with the A allele of rs6779545 demonstrated an increased risk (OR = 1.23, 95% CI = 1.01 to 1.51, P = 4.11 × 10-2). Notably, the two variants displayed a better prediction capability when combined, that the risk of developing childhood ALL increased by 131% in subjects with 2-4 risk alleles compared to those with 0-1 risk alleles (Ptrend = 2.05 × 10-3). In addition, the T allele of rs33940208 could reduce HTR3A mRNA level, while the A allele of rs6779545 increased HTR3D mRNA expression. In this study, we identified HTR3A rs33940208 and HTR3D rs6779545 as potential susceptibility loci for ALL in Chinese children. Future validation and functional research will elucidate the underlying molecular processes, refining preventive strategies for this disease.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Honghao Guo
- Department of Hematology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Wenfeng Fu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongsheng Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Jiou Zhao
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Key Laboratory of Hematology, Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008, China.
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China.
- Department of Genetic Toxicology and Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Key Laboratory of Hematology, Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
2
|
Svyatova G, Berezina G, Bazarbayeva A, Omarova K, Kussainov A. Genetic Markers of Acute Childhood B-Lineage Lymphoblastic Leukemia in the Kazakh Population. Fetal Pediatr Pathol 2024:1-15. [PMID: 38989811 DOI: 10.1080/15513815.2024.2375523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION To investigate the genetic contribution of 24 GWAS-associated polymorphic gene variants on the development of children's B-lineage acute lymphoblastic leukemia (B-ALL) in an ethnically homogeneous population of Kazakhs. METHODS A study of 205 children with B-ALL and 204 healthy children was conducted. Genotyping of polymorphic loci was carried out using the TaqMan method. RESULTS Significant associations (p < 0.05) with the risk of childhood B-ALL were found for twelve variants, including rs6457327 of the HLA gene, rs4251961 of the IL1RN gene, and rs1800630 of the TNF gene. Carriage of the minor allele A of the protective rs1801157 polymorphism A of the CXCL12 gene reduces the risk of B-ALL in the Kazakh population by 40%. DISCUSSION The results reveal significant associations of polymorphic genetic variants, which can serve as a basis for the development of effective methods for predicting the risk of B-ALL, early diagnosis, and timely treatment.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Department of the Republican Medical Genetic Consultation, Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Galina Berezina
- Department of the Republican Medical Genetic Consultation, Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Aigul Bazarbayeva
- Department of Science and Education, Scientific Center of Pediatric and Children's Surgery, Almaty, Republic of Kazakhstan
| | - Kulyan Omarova
- Department of Science and Education, Scientific Center of Pediatric and Children's Surgery, Almaty, Republic of Kazakhstan
| | - Abay Kussainov
- Scientific Center of Pediatric and Children's Surgery, Almaty, Republic of Kazakhstan
| |
Collapse
|
3
|
Zeng Q, Ren H, Liu C, Liu T, Xie Y, Tang X. Polymorphisms of inflammation-related genes and susceptibility to childhood leukemia: evidence from a meta-analysis of 16 published studies. Hematology 2023; 28:2210905. [PMID: 37183941 DOI: 10.1080/16078454.2023.2210905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVE This study was to comprehensively clarify the associations between single nucleotide polymorphisms (SNPs) in inflammatory genes and the susceptibility to childhood leukemia. METHODS Eligible articles were collected from the databases of PubMed, EMBASE, Cochrane Library, CNKI and Wan Fang. The pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to estimate the association strength by using the STATA 15.0 software. RESULTS Sixteen studies were enrolled. These studies mainly evaluated SNPs in 13 genes, including C-X-C motif chemokine ligand 12 (CXCL12), toll-like receptor (TLR)-4, TLR6, TLR9, CD14, interleukin (IL)-1β, NLR family pyrin domain containing 3, IL-4, interleukin 4 receptor, IL-10, IL-13, macrophage migration inhibitory factor (MIF) and tumor necrosis factor-α. The meta-analysis indicated that CXCL12 rs1801157 (AG vs GG: OR = 1.99; 95%CI = 1.20-3.30; p = 0.008; AA + AG vs GG: OR = 1.92; 95%CI = 1.18-3.12; p = 0.009), TLR6 rs5743810 (TC vs TT: OR = 0.58; 95%CI = 0.39-0.85; p = 0.005), IL-10 rs1800871 (TC vs CC: OR = 1.19; 95%CI = 1.01-1.41; p = 0.044), rs1800872 (AC vs AA: OR = 1.53; 95%CI = 1.22-1.92; p < 0.001) and MIF rs755622 (CG versus GG: OR = 1.33; 95%CI = 1.07-1.67; p = 0.012) polymorphisms were associated with the risk of childhood leukemia. No significant correlations were found between SNPs in other genes and the childhood leukemia risk. Subgroup analyses of rs1800871 and rs1800872 confirmed the conclusions obtained in their overall meta-analytical processes. CONCLUSION CXCL12 rs1801157, TLR6 rs5743810, IL-10 rs1800871, rs1800872 and MIF rs755622 polymorphisms may represent candidate biomarkers for the risk prediction of childhood leukemia.
Collapse
Affiliation(s)
- Qiuping Zeng
- Department of Pediatric Hematology and Rheumatology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, People's Republic of China
| | - Haoyan Ren
- Department of Pediatric Hematology and Rheumatology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, People's Republic of China
| | - Cui Liu
- Department of Pediatrics, Qingdao Huangdao District Central Hospital, Qingdao, People's Republic of China
| | - Ting Liu
- Department of Pediatric Hematology and Rheumatology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, People's Republic of China
| | - Yongwu Xie
- Department of Pediatric Hematology and Rheumatology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, People's Republic of China
| | - Xiufu Tang
- Department of Pediatric Hematology and Rheumatology, Zhuhai Center for Maternal and Child Health Care, Zhuhai, People's Republic of China
| |
Collapse
|
4
|
Svyatova G, Boranbayeva R, Berezina G, Manzhuova L, Murtazaliyeva A. Genes of Predisposition to Childhood Beta-Cell Acute Lymphoblastic Leukemia in the Kazakh Population. Asian Pac J Cancer Prev 2023; 24:2653-2666. [PMID: 37642051 PMCID: PMC10685230 DOI: 10.31557/apjcp.2023.24.8.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Today, acute lymphoblastic leukemia is one of the most common malignant diseases of the hematopoietic system. The genetic predisposition to ALL is not fully explored in various ethnic populations. OBJECTIVE The study aimed to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic gene variants: immune regulation GATA3 (rs3824662); transcription and differentiation of B cells: ARID5B (rs7089424, rs10740055), IKZF1 (rs4132601); differentiation of hematopoietic cells: PIP4K2A (rs7088318); apoptosis: CEBPE (rs2239633), tumor suppressors: CDKN2A (rs3731249), TP53 (rs1042522); carcinogen metabolism: CBR3 (rs1056892), CYP1A1 (rs104894, rs4646903), according to genome-wide association studies analyses associated with the risk of developing pediatric beta-cell acute lymphoblastic leukemia (B-cell ALL), in an ethnically homogeneous population of Kazakhs with studied populations. METHODS The genomic database consists of 1800 conditionally healthy persons of Kazakh nationality, genotyped using OmniChip 2.5-8 Illumina chips at the deCODE genetics as part of the InterPregGen 7 project of the European Union (EU) framework program under Grant Agreement No. 282540. RESULTS High population frequencies of single nucleotide polymorphism (SNP) minor alleles identified for immune regulation genes - GATA3 rs3824662 - 42.5%; transcription and differentiation of B-cells genes - ARID5B rs7089424 - 33.1% and rs10740055 - 48.5%, which suggests their significant genetic contribution to the risk of development and prognosis of the effectiveness of B-cell ALL therapy in the Kazakh population. The significantly lower population frequency of the minor allele G rs1056892 CBR3 gene - 38.6% in the Kazakhs suggests its significant protective effect in reducing the risk of childhood B-cell ALL and the smaller number of cardiac complications after anthracycline therapy. CONCLUSION The obtained results will serve as a basis for developing effective methods for predicting the risk of development, early diagnosis, and effectiveness of treatment of B-cell ALL in children.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| | - Riza Boranbayeva
- Scientific Center of Pediatrics and Pediatric Surgery, 050060, 146 Al-Farabi Ave., Almaty, Kazakhstan.
| | - Galina Berezina
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| | - Lyazat Manzhuova
- Scientific Center of Pediatrics and Pediatric Surgery, 050060, 146 Al-Farabi Ave., Almaty, Kazakhstan.
| | - Alexandra Murtazaliyeva
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| |
Collapse
|
5
|
Association of TP53 rs1042522 C>G Polymorphism with Glioma Risk in Chinese Children. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2712808. [PMID: 35996546 PMCID: PMC9392611 DOI: 10.1155/2022/2712808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Glioma is the most common intracranial malignancy. TP53 is a crucial tumor suppressor gene that plays an essential regulatory role in cell growth, apoptosis, and DNA repair. The TP53 rs1042522 C>G polymorphism has been reported to be strongly associated with various tumor risks. To assess the TP53 rs1042522 C>G polymorphism with glioma risk in Chinese children, we determined the genotypes of the TP53 rs1042522 C>G polymorphism in 171 glioma patients and 228 cancer-free controls by Taqman assay. We assessed the association of the polymorphism with glioma risk using odds ratio (OR) and 95% confidence interval (CI) generated by logistic regression models. We also performed stratified analyses by age, gender, tumor subtypes, and clinical stages, but no significant association was detected between TP53 rs1042522 C>G polymorphism and childhood glioma risk. These results suggest that the TP53 rs1042522 C>G polymorphism is not associated with glioma risk in Chinese children. Subsequent studies with a larger sample size are needed to validate our results.
Collapse
|