1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Sugiura T, Kameyama A. Preparation of Soluble Mucin Solutions from the Salivary Glands. Methods Mol Biol 2024; 2763:45-50. [PMID: 38347398 DOI: 10.1007/978-1-0716-3670-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Studying salivary gland mucins is important for elucidating the pathogenesis of salivary gland diseases, including tumors and xerostomia, and developing diagnostic methods for them. Classic methods for isolating mucins from salivary glands require sacrificing several animals to obtain sufficient quantities of mucin and are time-consuming. Supported molecular matrix electrophoresis (SMME) was used to characterize mucins and their glycans. With this method, mucins can be analyzed within 2 days using less than 100 mg of tissue and without using expensive equipment, such as an ultracentrifuge. This chapter describes a method for preparing mucin solutions for SMME analysis of salivary gland mucins.
Collapse
Affiliation(s)
- Takanori Sugiura
- Division of Oral and Maxillofacial Surgery, Ushiku Aiwa General Hospital, Ushiku, Japan
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, Ichikawa, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
3
|
Taniguchi M, Okumura R, Matsuzaki T, Nakatani A, Sakaki K, Okamoto S, Ishibashi A, Tani H, Horikiri M, Kobayashi N, Yoshikawa HY, Motooka D, Okuzaki D, Nakamura S, Kida T, Kameyama A, Takeda K. Sialylation shapes mucus architecture inhibiting bacterial invasion in the colon. Mucosal Immunol 2023; 16:624-641. [PMID: 37385587 DOI: 10.1016/j.mucimm.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
In the intestine, mucin 2 (Muc2) forms a network structure and prevents bacterial invasion. Glycans are indispensable for Muc2 barrier function. Among various glycosylation patterns of Muc2, sialylation inhibits bacteria-dependent Muc2 degradation. However, the mechanisms by which Muc2 creates the network structure and sialylation prevents mucin degradation remain unknown. Here, by focusing on two glycosyltransferases, St6 N-acetylgalactosaminide α-2,6-sialyltransferase 6 (St6galnac6) and β-1,3-galactosyltransferase 5 (B3galt5), mediating the generation of desialylated glycans, we show that sialylation forms the network structure of Muc2 by providing negative charge and hydrophilicity. The colonic mucus of mice lacking St6galnac6 and B3galt5 was less sialylated, thinner, and more permeable to microbiota, resulting in high susceptibility to intestinal inflammation. Mice with a B3galt5 mutation associated with inflammatory bowel disease (IBD) also showed the loss of desialylated glycans of mucus and the high susceptibility to intestinal inflammation, suggesting that the reduced sialylation of Muc2 is associated with the pathogenesis of IBD. In mucins of mice with reduced sialylation, negative charge was reduced, the network structure was disturbed, and many bacteria invaded. Thus, sialylation mediates the negative charging of Muc2 and facilitates the formation of the mucin network structure, thereby inhibiting bacterial invasion in the colon to maintain gut homeostasis.
Collapse
Affiliation(s)
- Mugen Taniguchi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Infectious Diseases Unit, Department of Medical Innovations, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan
| | - Takahisa Matsuzaki
- Center for Future Innovation, Graduate School of Engineering, Osaka University, Osaka, Japan; Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ayaka Nakatani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kei Sakaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shota Okamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Airi Ishibashi
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Haruka Tani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Momoka Horikiri
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Naritaka Kobayashi
- Department of Electronic Systems Engineering, The University of Shiga Prefecture, Shiga, Japan
| | - Hiroshi Y Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshiyuki Kida
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Tang R, Wang M, Chao C, Di D. Mucoepidermoid carcinoma in mediastinum: A case report. Asian J Surg 2023; 46:4624-4626. [PMID: 37270311 DOI: 10.1016/j.asjsur.2023.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/05/2023] Open
Affiliation(s)
- Renzhe Tang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China.
| |
Collapse
|
5
|
Sugiura T, Hashimoto K, Kikuta K, Anazawa U, Nomura T, Kameyama A. Expression and localisation of MUC1 modified with sialylated core-2 O-glycans in mucoepidermoid carcinoma. Sci Rep 2023; 13:5752. [PMID: 37031283 PMCID: PMC10082819 DOI: 10.1038/s41598-023-32597-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most frequent of the rare salivary gland malignancies. We previously reported high expression of Mucin 1 (MUC1) modified with sialylated core-2 O-glycans in MEC by using tissue homogenates. In this study, we characterised glycan structures of MEC and identified the localisation of cells expressing these distinctive glycans on MUC1. Mucins were extracted from the frozen tissues of three patients with MEC, and normal salivary glands (NSGs) extracted from seven patients, separated by supported molecular matrix electrophoresis (SMME) and the membranes stained with various lectins. In addition, formalin-fixed, paraffin-embedded sections from three patients with MEC were subjected to immunohistochemistry (IHC) with various monoclonal antibodies and analysed for C2GnT-1 expression by in situ hybridisation (ISH). Lectin blotting of the SMME membranes revealed that glycans on MUC1 from MEC samples contained α2,3-linked sialic acid. In IHC, MUC1 was diffusely detected at MEC-affected regions but was specifically detected at apical membranes in NSGs. ISH showed that C2GnT-1 was expressed at the MUC1-positive in MEC-affected regions but not in the NSG. MEC cells produced MUC1 modified with α2,3-linked sialic acid-containing core-2 O-glycans. MUC1 containing these glycans deserves further study as a new potential diagnostic marker of MEC.
Collapse
Affiliation(s)
- Takanori Sugiura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Kazutaka Kikuta
- Department of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Ukei Anazawa
- Department of Orthopaedic Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
- Oral Cancer Center, Tokyo Dental College, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| | - Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|