1
|
Wang M, Liao J, Wang J, Xu M, Cheng Y, Wei L, Huang A. HDAC2 promotes autophagy-associated HCC malignant progression by transcriptionally activating LAPTM4B. Cell Death Dis 2024; 15:593. [PMID: 39147759 PMCID: PMC11327261 DOI: 10.1038/s41419-024-06981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health challenge. The activation of autophagy plays an essential role in promoting the proliferation and survival of cancer cells. However, the upstream regulatory network and mechanisms governing autophagy in HCC remain unclear. This study demonstrated that histone deacetylase 2 (HDAC2) regulates autophagy in HCC. Its expression was elevated in HCC tissues, and high HDAC2 expression was strongly associated with poor prognosis in individuals with HCC. Integrated in vitro and in vivo investigations confirmed that HDAC2 promotes autophagy and autophagy-related malignant progression in HCC. Mechanistically, HDAC2 bound specifically to the lysosome-associated protein transmembrane 4-β (LAPTM4B) promoter at four distinct binding sites, enhancing its transcriptional activation and driving autophagy-related malignant progression in HCC. These findings establish LAPTM4B as a direct target gene of HDAC2. Furthermore, the selective inhibitor of HDAC2 effectively alleviated the malignant development of HCC. In addition, multivariate Cox regression analysis of 105 human HCC samples revealed that HDAC2 expression is an independent predictor of HCC prognosis. This study underscores the crucial role of the HDAC2-LAPTM4B axis in regulating autophagy in the malignant evolution of HCC and highlights the potential of targeting HDAC2 to prevent and halt the malignant progression of HCC.
Collapse
Affiliation(s)
- Meifeng Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jie Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Meifang Xu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Ye Cheng
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China.
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China.
| |
Collapse
|
2
|
Huang Y, Peng M, Qin H, Li Y, Pei L, Liu X, Zhao X. LAPTM4B promotes AML progression through regulating RPS9/STAT3 axis. Cell Signal 2023; 106:110623. [PMID: 36758682 DOI: 10.1016/j.cellsig.2023.110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder with high morbidity and mortality under the existing treatment strategy. Here, we found that lysosome-associated protein transmembrane 4 beta (LAPTM4B) was frequently upregulated in AML, and high LAPTM4B was associated with poor outcome. Moreover, LAPTM4B promoted leukemia progression in vitro and in vivo. Mechanically, LAPTM4B interacted with RPS9, and positively regulated RPS9 protein stability, which enhanced leukemia cell progression via activating STAT3. Our findings indicate for the first time that LAPTM4B contributes to leukemia progression in a RPS9/STAT3-dependent manner, suggesting that LAPTM4B may serve as a promising target for treatment of AML.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medicine, Chongqing University, Chongqing 400044, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Meixi Peng
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Huanhuan Qin
- Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yan Li
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Xindong Liu
- School of Medicine, Chongqing University, Chongqing 400044, China; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Xueya Zhao
- Biology Science Institutes, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Screening of four key genes in esophageal carcinoma based on TCGA and GEO data and verification of anti-proliferative effect of LAPTM4B knockdown in esophageal carcinoma cells invitro. Arch Biochem Biophys 2022; 728:109352. [PMID: 35863479 DOI: 10.1016/j.abb.2022.109352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Esophageal carcinoma (ESCA) is one of the most prevalent and aggressive malignancies of the gastrointestinal tract and constitutes sixth primary cause of cancer-related death worldwide. It is urgently needed to identify effective therapeutic targets. Differentially expressed genes (DEGs) involved in ESCA were identified via bioinformatics analysis. Four DEGs were selected for further analysis using Gene Expression Profiling Interactive Analysis, Human Protein Atlas, UALCAN web portal, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. 5-ethynyl-2'-deoxyuridine incorporation and cell counting kit-8 assays were used to evaluate cell proliferation. Western blot analysis was used to detect the protein levels of lysosomal-associated transmembrane protein 4B (LAPTM4B), Notch1, hairy and enhancer of split 1 (Hes1), and hairy and enhancer of split-related with YRPW motif 1 (Hey1). Results showed that LAPTM4B, Bcl-2 homology domain 3 (BH3)-interacting domain death agonist (BID), epithelial cell transforming sequence 2 (ECT2), and aurora kinase A (AURKA) were upregulated in several types of tumors including ESCA and correlated with tumor stage and tumor histology based on bioinformatics analysis. KEGG pathway analysis suggested that LAPTM4B-associated genes were significantly enriched in Notch pathway. Meanwhile, BID-, ECT2-, and AURKA-correlated genes were particularly enriched in p53 signaling pathway. Additionally, we found that LAPTM4B silencing inhibited cell proliferation and Notch pathway in ESCA cells. Notch1 overexpression abrogated LAPTM4B knockdown-induced proliferation reduction in ESCA cells. In conclusion, LAPTM4B silencing inhibited proliferation in ESCA cells by inactivating the Notch pathway.
Collapse
|